diff --git a/README.rst b/README.rst
index e6ff534c9..bc69d4f3a 100644
--- a/README.rst
+++ b/README.rst
@@ -52,11 +52,13 @@ connectivity matrices.
 
 XCP-D picks up right where `fMRIprep <https://fmriprep.org>`_ ends, directly consuming the outputs
 of fMRIPrep.
-XCP-D leverages the BIDS and NiPrep frameworks to automatically generate denoised BOLD images,
+XCP-D leverages the BIDS and NiPreps frameworks to automatically generate denoised BOLD images,
 parcellated time series, functional connectivity matrices, and quality assessment reports.
-XCP-D can also process outputs from: `NiBabies <https://nibabies.readthedocs.io>`_ and
-`Minimally preprocessed HCP data <https://www.humanconnectome.org/study/hcp-lifespan-development/\
-data-releases>`_.
+XCP-D can also process outputs from: `NiBabies <https://nibabies.readthedocs.io>`_,
+`ABCD-BIDS <https://github.com/DCAN-Labs/abcd-hcp-pipeline>`_,
+`Minimally preprocessed HCP <https://www.humanconnectome.org/study/hcp-lifespan-development/\
+data-releases>`_,
+and `UK Biobank <https://doi.org/10.1016/j.neuroimage.2017.10.034>`_ data.
 
 *Please note that XCP is only compatible with HCP-YA versions downloaded c.a. Feb 2023 at the moment.*
 
diff --git a/docs/links.rst b/docs/links.rst
index 6f5222391..4e77a2c61 100644
--- a/docs/links.rst
+++ b/docs/links.rst
@@ -4,6 +4,7 @@
 .. _ANTs: https://stnava.github.io/ANTs/
 .. _AFNI: https://afni.nimh.nih.gov/
 .. _`Connectome Workbench`: https://www.humanconnectome.org/software/connectome-workbench.html
+.. _`ABCD-BIDS`: https://github.com/DCAN-Labs/abcd-hcp-pipeline
 .. _`HCP Pipelines`: https://humanconnectome.org/software/hcp-mr-pipelines/
 .. _`Docker Engine`: https://www.docker.com/products/container-runtime
 .. _`Docker`: https://docs.docker.com
diff --git a/docs/outputs.rst b/docs/outputs.rst
index e9459bd41..94e8ccdf7 100644
--- a/docs/outputs.rst
+++ b/docs/outputs.rst
@@ -72,6 +72,14 @@ The 4S atlas is used in the same manner across three PennLINC BIDS Apps:
 XCP-D, QSIPrep_, and ASLPrep_, to produce synchronized outputs across modalities.
 For more information about the 4S atlas, please see https://github.com/PennLINC/AtlasPack.
 
+.. tip::
+
+   You can choose to only use a subset of the available atlases by using the ``--atlases``
+   parameter.
+
+   Alternatively, if you want to skip the parcellation step completely,
+   you can use the ``--skip-parcellation`` parameter.
+
 Atlases are written out to the ``atlases`` subfolder, following BEP038.
 
 .. code-block::
diff --git a/docs/usage.rst b/docs/usage.rst
index 1031a4459..86f106bec 100644
--- a/docs/usage.rst
+++ b/docs/usage.rst
@@ -15,8 +15,8 @@ Running XCP-D
 Execution and Input Formats
 ***************************
 
-The *XCP-D* workflow takes `fMRIPRep`, `NiBabies` and `HCP` outputs in the form of BIDS
-derivatives.
+The *XCP-D* workflow takes `fMRIPRep`_, `NiBabies`_, `HCP Pipelines`_, `ABCD-BIDS`_,
+and `UK Biobank` outputs in the form of BIDS derivatives.
 In these examples, we use an fmriprep output directory.
 
 The outputs are required to include at least anatomical and functional outputs with at least one
diff --git a/docs/workflows.rst b/docs/workflows.rst
index 6344a4e72..e29e9a60b 100644
--- a/docs/workflows.rst
+++ b/docs/workflows.rst
@@ -36,8 +36,8 @@ Surface normalization
 ---------------------
 :func:`~xcp_d.workflows.anatomical.init_warp_surfaces_to_template_wf`
 
-If the ``--warp-surfaces-native2std`` is used, then fsnative surface files from the preprocessing
-derivatives will be warped to fsLR-32k space.
+If the ``--warp-surfaces-native2std`` flag is used,
+then fsnative surface files from the preprocessing derivatives will be warped to fsLR-32k space.
 
 .. important::
 
@@ -504,15 +504,20 @@ ReHo
 :func:`~xcp_d.workflows.restingstate.init_reho_cifti_wf`
 
 
-Parcellation and functional connectivity estimation
-===================================================
+Parcellation and functional connectivity estimation [OPTIONAL]
+==============================================================
 :func:`~xcp_d.workflows.connectivity.init_functional_connectivity_nifti_wf`,
 :func:`~xcp_d.workflows.connectivity.init_functional_connectivity_cifti_wf`
 
-The ``filtered, denoised BOLD`` is fed into a functional connectivity workflow,
+If the user chooses,
+the ``filtered, denoised BOLD`` is fed into a functional connectivity workflow,
 which extracts parcel-wise time series from the BOLD using several atlases.
 These atlases are documented in :doc:`outputs`.
 
+Users can control which atlases are used with the ``--atlases`` parameter
+(by default, all atlases are used),
+or can skip this step entirely with ``--skip-parcellation``.
+
 The resulting parcellated time series for each atlas is then used to generate static functional
 connectivity matrices, as measured with Pearson correlation coefficients.
 
diff --git a/xcp_d/cli/run.py b/xcp_d/cli/run.py
index ffe2108d9..eab596c73 100644
--- a/xcp_d/cli/run.py
+++ b/xcp_d/cli/run.py
@@ -25,6 +25,7 @@
     check_deps,
     json_file,
 )
+from xcp_d.utils.atlas import select_atlases
 
 warnings.filterwarnings("ignore")
 
@@ -106,15 +107,8 @@ def get_parser():
         metavar="FILE",
         help="A JSON file defining BIDS input filters using PyBIDS.",
     )
-    g_bids.add_argument(
-        "-m",
-        "--combineruns",
-        action="store_true",
-        default=False,
-        help="After denoising, concatenate each derivative from each task across runs.",
-    )
 
-    g_surfx = parser.add_argument_group("Options for cifti processing")
+    g_surfx = parser.add_argument_group("Options for CIFTI processing")
     g_surfx.add_argument(
         "-s",
         "--cifti",
@@ -186,14 +180,16 @@ def get_parser():
 
     g_param = parser.add_argument_group("Postprocessing parameters")
     g_param.add_argument(
-        "--smoothing",
-        default=6,
-        action="store",
-        type=float,
+        "--dummy-scans",
+        "--dummy_scans",
+        dest="dummy_scans",
+        default=0,
+        type=_int_or_auto,
+        metavar="{{auto,INT}}",
         help=(
-            "FWHM, in millimeters, of the Gaussian smoothing kernel to apply to the denoised BOLD "
-            "data. "
-            "This may be set to 0."
+            "Number of volumes to remove from the beginning of each run. "
+            "If set to 'auto', xcp_d will extract non-steady-state volume indices from the "
+            "preprocessing derivatives' confounds file."
         ),
     )
     g_param.add_argument(
@@ -243,102 +239,34 @@ def get_parser():
         ),
     )
     g_param.add_argument(
-        "--min_coverage",
-        "--min-coverage",
-        required=False,
-        default=0.5,
-        type=_restricted_float,
-        help=(
-            "Coverage threshold to apply to parcels in each atlas. "
-            "Any parcels with lower coverage than the threshold will be replaced with NaNs. "
-            "Must be a value between zero and one, indicating proportion of the parcel. "
-            "Default is 0.5."
-        ),
-    )
-    g_param.add_argument(
-        "--min_time",
-        "--min-time",
-        required=False,
-        default=100,
+        "--smoothing",
+        default=6,
+        action="store",
         type=float,
         help=(
-            "Post-scrubbing threshold to apply to individual runs in the dataset. "
-            "This threshold determines the minimum amount of time, in seconds, "
-            "needed to post-process a given run, once high-motion outlier volumes are removed. "
-            "This will have no impact if scrubbing is disabled "
-            "(i.e., if the FD threshold is zero or negative). "
-            "This parameter can be disabled by providing a zero or a negative value."
-        ),
-    )
-    g_param.add_argument(
-        "--dummy-scans",
-        "--dummy_scans",
-        dest="dummy_scans",
-        default=0,
-        type=_int_or_auto,
-        metavar="{{auto,INT}}",
-        help=(
-            "Number of volumes to remove from the beginning of each run. "
-            "If set to 'auto', xcp_d will extract non-steady-state volume indices from the "
-            "preprocessing derivatives' confounds file."
+            "FWHM, in millimeters, of the Gaussian smoothing kernel to apply to the denoised BOLD "
+            "data. "
+            "This may be set to 0."
         ),
     )
-
     g_param.add_argument(
-        "--random-seed",
-        "--random_seed",
-        dest="random_seed",
-        default=None,
-        type=int,
-        metavar="_RANDOM_SEED",
-        help="Initialize the random seed for the workflow.",
+        "-m",
+        "--combineruns",
+        action="store_true",
+        default=False,
+        help="After denoising, concatenate each derivative from each task across runs.",
     )
 
-    g_filter = parser.add_argument_group("Filtering parameters")
-
-    g_filter.add_argument(
-        "--disable-bandpass-filter",
-        "--disable_bandpass_filter",
-        dest="bandpass_filter",
-        action="store_false",
-        help=(
-            "Disable bandpass filtering. "
-            "If bandpass filtering is disabled, then ALFF derivatives will not be calculated."
+    g_motion_filter = parser.add_argument_group(
+        title="Motion filtering parameters",
+        description=(
+            "These parameters enable and control a filter that will be applied to motion "
+            "parameters. "
+            "Motion parameters may be contaminated by non-motion noise, and applying a filter "
+            "may reduce the impact of that contamination."
         ),
     )
-    g_filter.add_argument(
-        "--lower-bpf",
-        "--lower_bpf",
-        action="store",
-        default=0.01,
-        type=float,
-        help=(
-            "Lower cut-off frequency (Hz) for the Butterworth bandpass filter to be applied to "
-            "the denoised BOLD data. Set to 0.0 or negative to disable high-pass filtering. "
-            "See Satterthwaite et al. (2013)."
-        ),
-    )
-    g_filter.add_argument(
-        "--upper-bpf",
-        "--upper_bpf",
-        action="store",
-        default=0.08,
-        type=float,
-        help=(
-            "Upper cut-off frequency (Hz) for the Butterworth bandpass filter to be applied to "
-            "the denoised BOLD data. Set to 0.0 or negative to disable low-pass filtering. "
-            "See Satterthwaite et al. (2013)."
-        ),
-    )
-    g_filter.add_argument(
-        "--bpf-order",
-        "--bpf_order",
-        action="store",
-        default=2,
-        type=int,
-        help="Number of filter coefficients for the Butterworth bandpass filter.",
-    )
-    g_filter.add_argument(
+    g_motion_filter.add_argument(
         "--motion-filter-type",
         "--motion_filter_type",
         action="store",
@@ -354,7 +282,7 @@ def get_parser():
 If the filter type is set to "lp", then only ``band-stop-min`` must be defined.
 """,
     )
-    g_filter.add_argument(
+    g_motion_filter.add_argument(
         "--band-stop-min",
         "--band_stop_min",
         default=None,
@@ -371,7 +299,7 @@ def get_parser():
 this parameter is 6 BPM (equivalent to 0.1 Hertz), based on Gratton et al. (2020).
 """,
     )
-    g_filter.add_argument(
+    g_motion_filter.add_argument(
         "--band-stop-max",
         "--band_stop_max",
         default=None,
@@ -384,7 +312,7 @@ def get_parser():
 This parameter is used in conjunction with ``motion-filter-order`` and ``band-stop-min``.
 """,
     )
-    g_filter.add_argument(
+    g_motion_filter.add_argument(
         "--motion-filter-order",
         "--motion_filter_order",
         default=4,
@@ -421,6 +349,108 @@ def get_parser():
         ),
     )
     g_censor.add_argument(
+        "--min_time",
+        "--min-time",
+        required=False,
+        default=100,
+        type=float,
+        help=(
+            "Post-scrubbing threshold to apply to individual runs in the dataset. "
+            "This threshold determines the minimum amount of time, in seconds, "
+            "needed to post-process a given run, once high-motion outlier volumes are removed. "
+            "This will have no impact if scrubbing is disabled "
+            "(i.e., if the FD threshold is zero or negative). "
+            "This parameter can be disabled by providing a zero or a negative value."
+        ),
+    )
+
+    g_temporal_filter = parser.add_argument_group(
+        title="Data filtering parameters",
+        description=(
+            "These parameters determine whether a bandpass filter will be applied to the BOLD "
+            "data, after the censoring, denoising, and interpolation steps of the pipeline, "
+            "but before recensoring."
+        ),
+    )
+    g_temporal_filter.add_argument(
+        "--disable-bandpass-filter",
+        "--disable_bandpass_filter",
+        dest="bandpass_filter",
+        action="store_false",
+        help=(
+            "Disable bandpass filtering. "
+            "If bandpass filtering is disabled, then ALFF derivatives will not be calculated."
+        ),
+    )
+    g_temporal_filter.add_argument(
+        "--lower-bpf",
+        "--lower_bpf",
+        action="store",
+        default=0.01,
+        type=float,
+        help=(
+            "Lower cut-off frequency (Hz) for the Butterworth bandpass filter to be applied to "
+            "the denoised BOLD data. Set to 0.0 or negative to disable high-pass filtering. "
+            "See Satterthwaite et al. (2013)."
+        ),
+    )
+    g_temporal_filter.add_argument(
+        "--upper-bpf",
+        "--upper_bpf",
+        action="store",
+        default=0.08,
+        type=float,
+        help=(
+            "Upper cut-off frequency (Hz) for the Butterworth bandpass filter to be applied to "
+            "the denoised BOLD data. Set to 0.0 or negative to disable low-pass filtering. "
+            "See Satterthwaite et al. (2013)."
+        ),
+    )
+    g_temporal_filter.add_argument(
+        "--bpf-order",
+        "--bpf_order",
+        action="store",
+        default=2,
+        type=int,
+        help="Number of filter coefficients for the Butterworth bandpass filter.",
+    )
+
+    g_parcellation = parser.add_argument_group("Parcellation options")
+
+    g_atlases = g_parcellation.add_mutually_exclusive_group(required=False)
+    all_atlases = select_atlases(atlases=None, subset="all")
+    g_atlases.add_argument(
+        "--atlases",
+        action="store",
+        nargs="+",
+        choices=all_atlases,
+        default=all_atlases,
+        dest="atlases",
+        help="Selection of atlases to apply to the data. All are used by default.",
+    )
+    g_atlases.add_argument(
+        "--skip-parcellation",
+        "--skip_parcellation",
+        action="store_const",
+        const=[],
+        dest="atlases",
+        help="Skip parcellation and correlation steps.",
+    )
+
+    g_parcellation.add_argument(
+        "--min_coverage",
+        "--min-coverage",
+        required=False,
+        default=0.5,
+        type=_restricted_float,
+        help=(
+            "Coverage threshold to apply to parcels in each atlas. "
+            "Any parcels with lower coverage than the threshold will be replaced with NaNs. "
+            "Must be a value between zero and one, indicating proportion of the parcel. "
+            "Default is 0.5."
+        ),
+    )
+    g_parcellation.add_argument(
         "--exact-time",
         "--exact_time",
         required=False,
@@ -439,6 +469,15 @@ def get_parser():
     )
 
     g_other = parser.add_argument_group("Other options")
+    g_other.add_argument(
+        "--random-seed",
+        "--random_seed",
+        dest="random_seed",
+        default=None,
+        type=int,
+        metavar="_RANDOM_SEED",
+        help="Initialize the random seed for the workflow.",
+    )
     g_other.add_argument(
         "-w",
         "--work_dir",
@@ -783,6 +822,13 @@ def _validate_parameters(opts, build_log):
             "is not set."
         )
 
+    # Parcellation parameters
+    if not opts.atlases and opts.min_coverage != 0.5:
+        build_log.warning(
+            "When no atlases are selected or parcellation is explicitly skipped "
+            "('--skip-parcellation'), '--min-coverage' will have no effect."
+        )
+
     # Some parameters are automatically set depending on the input type.
     if opts.input_type in ("dcan", "hcp"):
         if not opts.cifti:
@@ -1023,6 +1069,7 @@ def build_workflow(opts, retval):
         process_surfaces=opts.process_surfaces,
         dcan_qc=opts.dcan_qc,
         input_type=opts.input_type,
+        atlases=opts.atlases,
         min_coverage=opts.min_coverage,
         min_time=opts.min_time,
         exact_time=opts.exact_time,
diff --git a/xcp_d/interfaces/concatenation.py b/xcp_d/interfaces/concatenation.py
index f991ff3b9..4e00a4ca8 100644
--- a/xcp_d/interfaces/concatenation.py
+++ b/xcp_d/interfaces/concatenation.py
@@ -190,7 +190,10 @@ class _FilterOutFailedRunsOutputSpec(TraitedSpec):
         desc="Smoothed, denoised BOLD data.",
     )
     timeseries = traits.List(
-        traits.List(File(exists=True)),
+        traits.Either(
+            traits.List(File(exists=True)),
+            Undefined,
+        ),
         desc="List of lists of parcellated time series TSV files.",
     )
     timeseries_ciftis = traits.List(
@@ -293,7 +296,10 @@ class _ConcatenateInputsInputSpec(BaseInterfaceInputSpec):
         desc="Smoothed, denoised BOLD data. Optional.",
     )
     timeseries = traits.List(
-        traits.List(File(exists=True)),
+        traits.Either(
+            traits.List(File(exists=True)),
+            Undefined,
+        ),
         desc="List of lists of parcellated time series TSV files.",
     )
     timeseries_ciftis = traits.List(
diff --git a/xcp_d/interfaces/connectivity.py b/xcp_d/interfaces/connectivity.py
index d89ebb163..b76c1c3e4 100644
--- a/xcp_d/interfaces/connectivity.py
+++ b/xcp_d/interfaces/connectivity.py
@@ -688,7 +688,7 @@ def _run_interface(self, runtime):
 
 
 class _ConnectPlotInputSpec(BaseInterfaceInputSpec):
-    atlas_names = InputMultiObject(
+    atlases = InputMultiObject(
         traits.Str,
         mandatory=True,
         desc="List of atlases. Aligned with the list of time series in time_series_tsv.",
@@ -703,7 +703,7 @@ class _ConnectPlotInputSpec(BaseInterfaceInputSpec):
         mandatory=True,
         desc=(
             "List of TSV file with correlation matrices. "
-            "Aligned with the list of atlases in atlas_names"
+            "Aligned with the list of atlases in 'atlases'."
         ),
     )
 
@@ -809,16 +809,19 @@ def _run_interface(self, runtime):
         }
 
         fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(20, 20))
-        for atlas_name, subdict in ATLAS_LOOKUP.items():
-            atlas_idx = self.inputs.atlas_names.index(atlas_name)
+        for atlas, subdict in ATLAS_LOOKUP.items():
+            if atlas not in self.inputs.atlases:
+                continue
+
+            atlas_idx = self.inputs.atlases.index(atlas)
             atlas_file = self.inputs.correlations_tsv[atlas_idx]
             dseg_file = self.inputs.atlas_tsvs[atlas_idx]
 
-            column_name = COMMUNITY_LOOKUP[atlas_name]
+            column_name = COMMUNITY_LOOKUP[atlas]
             dseg_df = pd.read_table(dseg_file)
             corrs_df = pd.read_table(atlas_file, index_col="Node")
 
-            if atlas_name.startswith("4S"):
+            if atlas.startswith("4S"):
                 atlas_mapper = {
                     "CIT168Subcortical": "Subcortical",
                     "ThalamusHCP": "Thalamus",
diff --git a/xcp_d/tests/data/test_ds001419_cifti_outputs.txt b/xcp_d/tests/data/test_ds001419_cifti_outputs.txt
index d5e9b0d65..af20bb045 100644
--- a/xcp_d/tests/data/test_ds001419_cifti_outputs.txt
+++ b/xcp_d/tests/data/test_ds001419_cifti_outputs.txt
@@ -89,6 +89,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S1056Parcels_den-
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S1056Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S1056Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S1056Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S1056Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S1056Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S1056Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S1056Parcels_timeseries.json
@@ -105,6 +106,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S156Parcels_den-9
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S156Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S156Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S156Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S156Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S156Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S156Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S156Parcels_timeseries.json
@@ -121,6 +123,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S256Parcels_den-9
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S256Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S256Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S256Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S256Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S256Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S256Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S256Parcels_timeseries.json
@@ -137,6 +140,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S356Parcels_den-9
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S356Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S356Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S356Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S356Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S356Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S356Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S356Parcels_timeseries.json
@@ -153,6 +157,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S456Parcels_den-9
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S456Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S456Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S456Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S456Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S456Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S456Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S456Parcels_timeseries.json
@@ -169,6 +174,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S556Parcels_den-9
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S556Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S556Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S556Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S556Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S556Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S556Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S556Parcels_timeseries.json
@@ -185,6 +191,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S656Parcels_den-9
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S656Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S656Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S656Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S656Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S656Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S656Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S656Parcels_timeseries.json
@@ -201,6 +208,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S756Parcels_den-9
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S756Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S756Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S756Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S756Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S756Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S756Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S756Parcels_timeseries.json
@@ -217,6 +225,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S856Parcels_den-9
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S856Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S856Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S856Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S856Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S856Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S856Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S856Parcels_timeseries.json
@@ -233,6 +242,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S956Parcels_den-9
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S956Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S956Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S956Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S956Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S956Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S956Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-4S956Parcels_timeseries.json
@@ -249,6 +259,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Glasser_den-91k_ti
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Glasser_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Glasser_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Glasser_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Glasser_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Glasser_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Glasser_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Glasser_timeseries.json
@@ -265,6 +276,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Gordon_den-91k_tim
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Gordon_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Gordon_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Gordon_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Gordon_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Gordon_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Gordon_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Gordon_timeseries.json
@@ -281,6 +293,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-HCP_den-91k_timese
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-HCP_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-HCP_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-HCP_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-HCP_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-HCP_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-HCP_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-HCP_timeseries.json
@@ -297,6 +310,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Tian_den-91k_times
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Tian_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Tian_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Tian_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Tian_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Tian_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Tian_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-fsLR_atlas-Tian_timeseries.json
@@ -333,6 +347,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S1056Parcels_den-
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S1056Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S1056Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S1056Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S1056Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S1056Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S1056Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S1056Parcels_timeseries.json
@@ -349,6 +364,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S156Parcels_den-9
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S156Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S156Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S156Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S156Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S156Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S156Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S156Parcels_timeseries.json
@@ -365,6 +381,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S256Parcels_den-9
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S256Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S256Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S256Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S256Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S256Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S256Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S256Parcels_timeseries.json
@@ -381,6 +398,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S356Parcels_den-9
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S356Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S356Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S356Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S356Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S356Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S356Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S356Parcels_timeseries.json
@@ -397,6 +415,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S456Parcels_den-9
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S456Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S456Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S456Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S456Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S456Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S456Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S456Parcels_timeseries.json
@@ -413,6 +432,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S556Parcels_den-9
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S556Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S556Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S556Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S556Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S556Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S556Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S556Parcels_timeseries.json
@@ -429,6 +449,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S656Parcels_den-9
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S656Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S656Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S656Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S656Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S656Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S656Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S656Parcels_timeseries.json
@@ -445,6 +466,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S756Parcels_den-9
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S756Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S756Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S756Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S756Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S756Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S756Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S756Parcels_timeseries.json
@@ -461,6 +483,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S856Parcels_den-9
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S856Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S856Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S856Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S856Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S856Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S856Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S856Parcels_timeseries.json
@@ -477,6 +500,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S956Parcels_den-9
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S956Parcels_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S956Parcels_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S956Parcels_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S956Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S956Parcels_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S956Parcels_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-4S956Parcels_timeseries.json
@@ -493,6 +517,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Glasser_den-91k_ti
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Glasser_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Glasser_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Glasser_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Glasser_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Glasser_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Glasser_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Glasser_timeseries.json
@@ -509,6 +534,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Gordon_den-91k_tim
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Gordon_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Gordon_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Gordon_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Gordon_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Gordon_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Gordon_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Gordon_timeseries.json
@@ -525,6 +551,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-HCP_den-91k_timese
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-HCP_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-HCP_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-HCP_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-HCP_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-HCP_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-HCP_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-HCP_timeseries.json
@@ -541,6 +568,7 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Tian_den-91k_times
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Tian_den-91k_timeseries.ptseries.nii
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Tian_measure-pearsoncorrelation_conmat.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Tian_measure-pearsoncorrelation_conmat.tsv
+xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Tian_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Tian_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Tian_reho.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-fsLR_atlas-Tian_timeseries.json
diff --git a/xcp_d/tests/data/test_ds001419_nifti_outputs.txt b/xcp_d/tests/data/test_ds001419_nifti_outputs.txt
index 21005045e..9a5fdf3b3 100644
--- a/xcp_d/tests/data/test_ds001419_nifti_outputs.txt
+++ b/xcp_d/tests/data/test_ds001419_nifti_outputs.txt
@@ -1,60 +1,3 @@
-xcp_d/atlases
-xcp_d/atlases/atlas-4S1056Parcels
-xcp_d/atlases/atlas-4S1056Parcels/atlas-4S1056Parcels_dseg.json
-xcp_d/atlases/atlas-4S1056Parcels/atlas-4S1056Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S1056Parcels/space-MNI152NLin2009cAsym_atlas-4S1056Parcels_res-2_dseg.nii.gz
-xcp_d/atlases/atlas-4S156Parcels
-xcp_d/atlases/atlas-4S156Parcels/atlas-4S156Parcels_dseg.json
-xcp_d/atlases/atlas-4S156Parcels/atlas-4S156Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S156Parcels/space-MNI152NLin2009cAsym_atlas-4S156Parcels_res-2_dseg.nii.gz
-xcp_d/atlases/atlas-4S256Parcels
-xcp_d/atlases/atlas-4S256Parcels/atlas-4S256Parcels_dseg.json
-xcp_d/atlases/atlas-4S256Parcels/atlas-4S256Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S256Parcels/space-MNI152NLin2009cAsym_atlas-4S256Parcels_res-2_dseg.nii.gz
-xcp_d/atlases/atlas-4S356Parcels
-xcp_d/atlases/atlas-4S356Parcels/atlas-4S356Parcels_dseg.json
-xcp_d/atlases/atlas-4S356Parcels/atlas-4S356Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S356Parcels/space-MNI152NLin2009cAsym_atlas-4S356Parcels_res-2_dseg.nii.gz
-xcp_d/atlases/atlas-4S456Parcels
-xcp_d/atlases/atlas-4S456Parcels/atlas-4S456Parcels_dseg.json
-xcp_d/atlases/atlas-4S456Parcels/atlas-4S456Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S456Parcels/space-MNI152NLin2009cAsym_atlas-4S456Parcels_res-2_dseg.nii.gz
-xcp_d/atlases/atlas-4S556Parcels
-xcp_d/atlases/atlas-4S556Parcels/atlas-4S556Parcels_dseg.json
-xcp_d/atlases/atlas-4S556Parcels/atlas-4S556Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S556Parcels/space-MNI152NLin2009cAsym_atlas-4S556Parcels_res-2_dseg.nii.gz
-xcp_d/atlases/atlas-4S656Parcels
-xcp_d/atlases/atlas-4S656Parcels/atlas-4S656Parcels_dseg.json
-xcp_d/atlases/atlas-4S656Parcels/atlas-4S656Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S656Parcels/space-MNI152NLin2009cAsym_atlas-4S656Parcels_res-2_dseg.nii.gz
-xcp_d/atlases/atlas-4S756Parcels
-xcp_d/atlases/atlas-4S756Parcels/atlas-4S756Parcels_dseg.json
-xcp_d/atlases/atlas-4S756Parcels/atlas-4S756Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S756Parcels/space-MNI152NLin2009cAsym_atlas-4S756Parcels_res-2_dseg.nii.gz
-xcp_d/atlases/atlas-4S856Parcels
-xcp_d/atlases/atlas-4S856Parcels/atlas-4S856Parcels_dseg.json
-xcp_d/atlases/atlas-4S856Parcels/atlas-4S856Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S856Parcels/space-MNI152NLin2009cAsym_atlas-4S856Parcels_res-2_dseg.nii.gz
-xcp_d/atlases/atlas-4S956Parcels
-xcp_d/atlases/atlas-4S956Parcels/atlas-4S956Parcels_dseg.json
-xcp_d/atlases/atlas-4S956Parcels/atlas-4S956Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S956Parcels/space-MNI152NLin2009cAsym_atlas-4S956Parcels_res-2_dseg.nii.gz
-xcp_d/atlases/atlas-Glasser
-xcp_d/atlases/atlas-Glasser/atlas-Glasser_dseg.json
-xcp_d/atlases/atlas-Glasser/atlas-Glasser_dseg.tsv
-xcp_d/atlases/atlas-Glasser/space-MNI152NLin2009cAsym_atlas-Glasser_res-2_dseg.nii.gz
-xcp_d/atlases/atlas-Gordon
-xcp_d/atlases/atlas-Gordon/atlas-Gordon_dseg.json
-xcp_d/atlases/atlas-Gordon/atlas-Gordon_dseg.tsv
-xcp_d/atlases/atlas-Gordon/space-MNI152NLin2009cAsym_atlas-Gordon_res-2_dseg.nii.gz
-xcp_d/atlases/atlas-HCP
-xcp_d/atlases/atlas-HCP/atlas-HCP_dseg.json
-xcp_d/atlases/atlas-HCP/atlas-HCP_dseg.tsv
-xcp_d/atlases/atlas-HCP/space-MNI152NLin2009cAsym_atlas-HCP_res-2_dseg.nii.gz
-xcp_d/atlases/atlas-Tian
-xcp_d/atlases/atlas-Tian/atlas-Tian_dseg.json
-xcp_d/atlases/atlas-Tian/atlas-Tian_dseg.tsv
-xcp_d/atlases/atlas-Tian/space-MNI152NLin2009cAsym_atlas-Tian_res-2_dseg.nii.gz
 xcp_d/dataset_description.json
 xcp_d/desc-linc_qc.json
 xcp_d/logs
@@ -75,174 +18,6 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-01_desc-preproc_design.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_desc-preproc_design.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_outliers.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_outliers.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S156Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S156Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S156Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S156Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S156Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S156Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S156Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S156Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S156Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S156Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S156Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S156Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S256Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S256Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S256Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S256Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S256Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S256Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S256Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S256Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S256Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S256Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S256Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S256Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S356Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S356Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S356Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S356Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S356Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S356Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S356Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S356Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S356Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S356Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S356Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S356Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S456Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S456Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S456Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S456Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S456Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S456Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S456Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S456Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S456Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S456Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S456Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S456Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S556Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S556Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S556Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S556Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S556Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S556Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S556Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S556Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S556Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S556Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S556Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S556Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S656Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S656Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S656Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S656Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S656Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S656Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S656Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S656Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S656Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S656Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S656Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S656Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S756Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S756Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S756Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S756Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S756Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S756Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S756Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S756Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S756Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S756Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S756Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S756Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S856Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S856Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S856Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S856Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S856Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S856Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S856Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S856Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S856Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S856Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S856Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S856Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S956Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S956Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S956Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S956Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S956Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S956Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S956Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S956Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S956Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S956Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S956Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-4S956Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Glasser_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Glasser_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Glasser_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Glasser_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Glasser_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Glasser_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Glasser_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Glasser_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Glasser_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Glasser_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Glasser_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Glasser_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Gordon_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Gordon_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Gordon_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Gordon_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Gordon_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Gordon_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Gordon_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Gordon_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Gordon_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Gordon_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Gordon_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Gordon_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-HCP_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-HCP_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-HCP_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-HCP_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-HCP_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-HCP_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-HCP_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-HCP_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-HCP_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-HCP_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-HCP_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-HCP_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Tian_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Tian_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Tian_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Tian_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Tian_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Tian_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Tian_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Tian_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Tian_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Tian_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Tian_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_atlas-Tian_timeseries.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_desc-linc_qc.csv
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_res-2_alff.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-01_space-MNI152NLin2009cAsym_res-2_alff.nii.gz
@@ -260,174 +35,6 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-02_desc-preproc_design.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_desc-preproc_design.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_outliers.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_outliers.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S156Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S156Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S156Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S156Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S156Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S156Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S156Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S156Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S156Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S156Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S156Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S156Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S256Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S256Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S256Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S256Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S256Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S256Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S256Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S256Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S256Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S256Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S256Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S256Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S356Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S356Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S356Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S356Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S356Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S356Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S356Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S356Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S356Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S356Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S356Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S356Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S456Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S456Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S456Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S456Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S456Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S456Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S456Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S456Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S456Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S456Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S456Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S456Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S556Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S556Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S556Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S556Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S556Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S556Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S556Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S556Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S556Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S556Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S556Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S556Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S656Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S656Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S656Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S656Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S656Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S656Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S656Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S656Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S656Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S656Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S656Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S656Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S756Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S756Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S756Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S756Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S756Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S756Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S756Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S756Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S756Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S756Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S756Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S756Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S856Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S856Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S856Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S856Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S856Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S856Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S856Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S856Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S856Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S856Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S856Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S856Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S956Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S956Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S956Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S956Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S956Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S956Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S956Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S956Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S956Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S956Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S956Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-4S956Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Glasser_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Glasser_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Glasser_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Glasser_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Glasser_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Glasser_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Glasser_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Glasser_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Glasser_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Glasser_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Glasser_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Glasser_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Gordon_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Gordon_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Gordon_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Gordon_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Gordon_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Gordon_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Gordon_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Gordon_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Gordon_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Gordon_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Gordon_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Gordon_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-HCP_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-HCP_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-HCP_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-HCP_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-HCP_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-HCP_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-HCP_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-HCP_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-HCP_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-HCP_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-HCP_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-HCP_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Tian_alff.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Tian_alff.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Tian_coverage.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Tian_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Tian_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Tian_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Tian_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Tian_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Tian_reho.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Tian_reho.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Tian_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_atlas-Tian_timeseries.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_desc-linc_qc.csv
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_res-2_alff.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_res-2_alff.nii.gz
@@ -439,62 +46,6 @@ xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_res-2_des
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_res-2_desc-smooth_alff.nii.gz
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_res-2_reho.json
 xcp_d/sub-01/func/sub-01_task-imagery_run-02_space-MNI152NLin2009cAsym_res-2_reho.nii.gz
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S156Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S156Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S156Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S156Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S256Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S256Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S256Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S256Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S356Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S356Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S356Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S356Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S456Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S456Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S456Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S456Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S556Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S556Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S556Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S556Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S656Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S656Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S656Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S656Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S756Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S756Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S756Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S756Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S856Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S856Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S856Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S856Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S956Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S956Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S956Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-4S956Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-Glasser_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-Glasser_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-Glasser_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-Glasser_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-Gordon_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-Gordon_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-Gordon_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-Gordon_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-HCP_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-HCP_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-HCP_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-HCP_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-Tian_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-Tian_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-Tian_timeseries.json
-xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_atlas-Tian_timeseries.tsv
 xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_res-2_desc-denoisedSmoothed_bold.json
 xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_res-2_desc-denoisedSmoothed_bold.nii.gz
 xcp_d/sub-01/func/sub-01_task-imagery_space-MNI152NLin2009cAsym_res-2_desc-denoised_bold.json
@@ -505,174 +56,6 @@ xcp_d/sub-01/func/sub-01_task-rest_desc-preproc_design.json
 xcp_d/sub-01/func/sub-01_task-rest_desc-preproc_design.tsv
 xcp_d/sub-01/func/sub-01_task-rest_outliers.json
 xcp_d/sub-01/func/sub-01_task-rest_outliers.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S1056Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S156Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S156Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S156Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S156Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S156Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S156Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S156Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S156Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S156Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S156Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S156Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S156Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S256Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S256Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S256Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S256Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S256Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S256Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S256Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S256Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S256Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S256Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S256Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S256Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S356Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S356Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S356Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S356Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S356Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S356Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S356Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S356Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S356Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S356Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S356Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S356Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S456Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S456Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S456Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S456Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S456Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S456Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S456Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S456Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S456Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S456Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S456Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S456Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S556Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S556Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S556Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S556Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S556Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S556Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S556Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S556Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S556Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S556Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S556Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S556Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S656Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S656Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S656Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S656Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S656Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S656Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S656Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S656Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S656Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S656Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S656Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S656Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S756Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S756Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S756Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S756Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S756Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S756Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S756Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S756Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S756Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S756Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S756Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S756Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S856Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S856Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S856Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S856Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S856Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S856Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S856Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S856Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S856Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S856Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S856Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S856Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S956Parcels_alff.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S956Parcels_alff.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S956Parcels_coverage.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S956Parcels_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S956Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S956Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S956Parcels_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S956Parcels_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S956Parcels_reho.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S956Parcels_reho.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S956Parcels_timeseries.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-4S956Parcels_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Glasser_alff.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Glasser_alff.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Glasser_coverage.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Glasser_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Glasser_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Glasser_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Glasser_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Glasser_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Glasser_reho.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Glasser_reho.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Glasser_timeseries.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Glasser_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Gordon_alff.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Gordon_alff.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Gordon_coverage.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Gordon_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Gordon_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Gordon_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Gordon_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Gordon_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Gordon_reho.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Gordon_reho.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Gordon_timeseries.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Gordon_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-HCP_alff.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-HCP_alff.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-HCP_coverage.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-HCP_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-HCP_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-HCP_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-HCP_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-HCP_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-HCP_reho.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-HCP_reho.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-HCP_timeseries.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-HCP_timeseries.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Tian_alff.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Tian_alff.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Tian_coverage.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Tian_coverage.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Tian_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Tian_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Tian_measure-pearsoncorrelation_desc-26volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Tian_measure-pearsoncorrelation_desc-33volumes_conmat.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Tian_reho.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Tian_reho.tsv
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Tian_timeseries.json
-xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_atlas-Tian_timeseries.tsv
 xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_desc-linc_qc.csv
 xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_res-2_alff.json
 xcp_d/sub-01/func/sub-01_task-rest_space-MNI152NLin2009cAsym_res-2_alff.nii.gz
diff --git a/xcp_d/tests/data/test_pnc_cifti_outputs.txt b/xcp_d/tests/data/test_pnc_cifti_outputs.txt
index 78ef3a595..6fe8bbe90 100644
--- a/xcp_d/tests/data/test_pnc_cifti_outputs.txt
+++ b/xcp_d/tests/data/test_pnc_cifti_outputs.txt
@@ -1,52 +1,4 @@
 xcp_d/atlases
-xcp_d/atlases/atlas-4S1056Parcels
-xcp_d/atlases/atlas-4S1056Parcels/atlas-4S1056Parcels_dseg.json
-xcp_d/atlases/atlas-4S1056Parcels/atlas-4S1056Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S1056Parcels/space-fsLR_atlas-4S1056Parcels_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-4S156Parcels
-xcp_d/atlases/atlas-4S156Parcels/atlas-4S156Parcels_dseg.json
-xcp_d/atlases/atlas-4S156Parcels/atlas-4S156Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S156Parcels/space-fsLR_atlas-4S156Parcels_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-4S256Parcels
-xcp_d/atlases/atlas-4S256Parcels/atlas-4S256Parcels_dseg.json
-xcp_d/atlases/atlas-4S256Parcels/atlas-4S256Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S256Parcels/space-fsLR_atlas-4S256Parcels_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-4S356Parcels
-xcp_d/atlases/atlas-4S356Parcels/atlas-4S356Parcels_dseg.json
-xcp_d/atlases/atlas-4S356Parcels/atlas-4S356Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S356Parcels/space-fsLR_atlas-4S356Parcels_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-4S456Parcels
-xcp_d/atlases/atlas-4S456Parcels/atlas-4S456Parcels_dseg.json
-xcp_d/atlases/atlas-4S456Parcels/atlas-4S456Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S456Parcels/space-fsLR_atlas-4S456Parcels_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-4S556Parcels
-xcp_d/atlases/atlas-4S556Parcels/atlas-4S556Parcels_dseg.json
-xcp_d/atlases/atlas-4S556Parcels/atlas-4S556Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S556Parcels/space-fsLR_atlas-4S556Parcels_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-4S656Parcels
-xcp_d/atlases/atlas-4S656Parcels/atlas-4S656Parcels_dseg.json
-xcp_d/atlases/atlas-4S656Parcels/atlas-4S656Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S656Parcels/space-fsLR_atlas-4S656Parcels_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-4S756Parcels
-xcp_d/atlases/atlas-4S756Parcels/atlas-4S756Parcels_dseg.json
-xcp_d/atlases/atlas-4S756Parcels/atlas-4S756Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S756Parcels/space-fsLR_atlas-4S756Parcels_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-4S856Parcels
-xcp_d/atlases/atlas-4S856Parcels/atlas-4S856Parcels_dseg.json
-xcp_d/atlases/atlas-4S856Parcels/atlas-4S856Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S856Parcels/space-fsLR_atlas-4S856Parcels_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-4S956Parcels
-xcp_d/atlases/atlas-4S956Parcels/atlas-4S956Parcels_dseg.json
-xcp_d/atlases/atlas-4S956Parcels/atlas-4S956Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S956Parcels/space-fsLR_atlas-4S956Parcels_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-Glasser
-xcp_d/atlases/atlas-Glasser/atlas-Glasser_dseg.json
-xcp_d/atlases/atlas-Glasser/atlas-Glasser_dseg.tsv
-xcp_d/atlases/atlas-Glasser/space-fsLR_atlas-Glasser_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-Gordon
-xcp_d/atlases/atlas-Gordon/atlas-Gordon_dseg.json
-xcp_d/atlases/atlas-Gordon/atlas-Gordon_dseg.tsv
-xcp_d/atlases/atlas-Gordon/space-fsLR_atlas-Gordon_den-91k_dseg.dlabel.nii
 xcp_d/atlases/atlas-HCP
 xcp_d/atlases/atlas-HCP/atlas-HCP_dseg.json
 xcp_d/atlases/atlas-HCP/atlas-HCP_dseg.tsv
@@ -65,42 +17,6 @@ xcp_d/sub-1648798153/ses-PNC1
 xcp_d/sub-1648798153/ses-PNC1/anat
 xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-MNI152NLin6Asym_desc-preproc_T1w.nii.gz
 xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-MNI152NLin6Asym_dseg.nii.gz
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S1056Parcels_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S1056Parcels_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S1056Parcels_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S156Parcels_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S156Parcels_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S156Parcels_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S256Parcels_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S256Parcels_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S256Parcels_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S356Parcels_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S356Parcels_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S356Parcels_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S456Parcels_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S456Parcels_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S456Parcels_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S556Parcels_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S556Parcels_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S556Parcels_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S656Parcels_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S656Parcels_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S656Parcels_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S756Parcels_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S756Parcels_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S756Parcels_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S856Parcels_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S856Parcels_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S856Parcels_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S956Parcels_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S956Parcels_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S956Parcels_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-Glasser_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-Glasser_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-Glasser_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-Gordon_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-Gordon_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-Gordon_den-91k_desc-thickness_morph.tsv
 xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_den-32k_hemi-L_desc-hcp_inflated.surf.gii
 xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_den-32k_hemi-L_desc-hcp_midthickness.surf.gii
 xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_den-32k_hemi-L_desc-hcp_vinflated.surf.gii
@@ -122,198 +38,6 @@ xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleb
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_design.tsv
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_outliers.json
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_outliers.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S1056Parcels_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S1056Parcels_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S1056Parcels_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S1056Parcels_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S1056Parcels_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S1056Parcels_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S1056Parcels_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S1056Parcels_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S1056Parcels_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S1056Parcels_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S1056Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S1056Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S1056Parcels_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S1056Parcels_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S1056Parcels_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S1056Parcels_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S156Parcels_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S156Parcels_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S156Parcels_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S156Parcels_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S156Parcels_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S156Parcels_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S156Parcels_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S156Parcels_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S156Parcels_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S156Parcels_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S156Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S156Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S156Parcels_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S156Parcels_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S156Parcels_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S156Parcels_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S256Parcels_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S256Parcels_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S256Parcels_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S256Parcels_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S256Parcels_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S256Parcels_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S256Parcels_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S256Parcels_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S256Parcels_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S256Parcels_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S256Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S256Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S256Parcels_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S256Parcels_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S256Parcels_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S256Parcels_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S356Parcels_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S356Parcels_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S356Parcels_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S356Parcels_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S356Parcels_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S356Parcels_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S356Parcels_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S356Parcels_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S356Parcels_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S356Parcels_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S356Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S356Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S356Parcels_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S356Parcels_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S356Parcels_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S356Parcels_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S456Parcels_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S456Parcels_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S456Parcels_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S456Parcels_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S456Parcels_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S456Parcels_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S456Parcels_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S456Parcels_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S456Parcels_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S456Parcels_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S456Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S456Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S456Parcels_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S456Parcels_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S456Parcels_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S456Parcels_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S556Parcels_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S556Parcels_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S556Parcels_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S556Parcels_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S556Parcels_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S556Parcels_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S556Parcels_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S556Parcels_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S556Parcels_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S556Parcels_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S556Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S556Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S556Parcels_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S556Parcels_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S556Parcels_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S556Parcels_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S656Parcels_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S656Parcels_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S656Parcels_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S656Parcels_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S656Parcels_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S656Parcels_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S656Parcels_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S656Parcels_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S656Parcels_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S656Parcels_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S656Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S656Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S656Parcels_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S656Parcels_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S656Parcels_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S656Parcels_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S756Parcels_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S756Parcels_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S756Parcels_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S756Parcels_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S756Parcels_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S756Parcels_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S756Parcels_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S756Parcels_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S756Parcels_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S756Parcels_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S756Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S756Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S756Parcels_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S756Parcels_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S756Parcels_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S756Parcels_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S856Parcels_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S856Parcels_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S856Parcels_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S856Parcels_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S856Parcels_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S856Parcels_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S856Parcels_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S856Parcels_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S856Parcels_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S856Parcels_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S856Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S856Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S856Parcels_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S856Parcels_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S856Parcels_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S856Parcels_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S956Parcels_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S956Parcels_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S956Parcels_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S956Parcels_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S956Parcels_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S956Parcels_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S956Parcels_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S956Parcels_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S956Parcels_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S956Parcels_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S956Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S956Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S956Parcels_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S956Parcels_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S956Parcels_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-4S956Parcels_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Glasser_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Glasser_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Glasser_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Glasser_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Glasser_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Glasser_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Glasser_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Glasser_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Glasser_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Glasser_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Glasser_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Glasser_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Glasser_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Glasser_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Glasser_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Glasser_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Gordon_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Gordon_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Gordon_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Gordon_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Gordon_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Gordon_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Gordon_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Gordon_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Gordon_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Gordon_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Gordon_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Gordon_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Gordon_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Gordon_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Gordon_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-Gordon_timeseries.tsv
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-HCP_alff.json
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-HCP_alff.tsv
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-rest_acq-singleband_space-fsLR_atlas-HCP_coverage.json
diff --git a/xcp_d/tests/data/test_pnc_cifti_t2wonly_outputs.txt b/xcp_d/tests/data/test_pnc_cifti_t2wonly_outputs.txt
index 4e611fc91..de150fcb4 100644
--- a/xcp_d/tests/data/test_pnc_cifti_t2wonly_outputs.txt
+++ b/xcp_d/tests/data/test_pnc_cifti_t2wonly_outputs.txt
@@ -1,60 +1,12 @@
 xcp_d/atlases
-xcp_d/atlases/atlas-4S1056Parcels
-xcp_d/atlases/atlas-4S1056Parcels/atlas-4S1056Parcels_dseg.json
-xcp_d/atlases/atlas-4S1056Parcels/atlas-4S1056Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S1056Parcels/space-fsLR_atlas-4S1056Parcels_den-91k_dseg.dlabel.nii
 xcp_d/atlases/atlas-4S156Parcels
 xcp_d/atlases/atlas-4S156Parcels/atlas-4S156Parcels_dseg.json
 xcp_d/atlases/atlas-4S156Parcels/atlas-4S156Parcels_dseg.tsv
 xcp_d/atlases/atlas-4S156Parcels/space-fsLR_atlas-4S156Parcels_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-4S256Parcels
-xcp_d/atlases/atlas-4S256Parcels/atlas-4S256Parcels_dseg.json
-xcp_d/atlases/atlas-4S256Parcels/atlas-4S256Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S256Parcels/space-fsLR_atlas-4S256Parcels_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-4S356Parcels
-xcp_d/atlases/atlas-4S356Parcels/atlas-4S356Parcels_dseg.json
-xcp_d/atlases/atlas-4S356Parcels/atlas-4S356Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S356Parcels/space-fsLR_atlas-4S356Parcels_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-4S456Parcels
-xcp_d/atlases/atlas-4S456Parcels/atlas-4S456Parcels_dseg.json
-xcp_d/atlases/atlas-4S456Parcels/atlas-4S456Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S456Parcels/space-fsLR_atlas-4S456Parcels_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-4S556Parcels
-xcp_d/atlases/atlas-4S556Parcels/atlas-4S556Parcels_dseg.json
-xcp_d/atlases/atlas-4S556Parcels/atlas-4S556Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S556Parcels/space-fsLR_atlas-4S556Parcels_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-4S656Parcels
-xcp_d/atlases/atlas-4S656Parcels/atlas-4S656Parcels_dseg.json
-xcp_d/atlases/atlas-4S656Parcels/atlas-4S656Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S656Parcels/space-fsLR_atlas-4S656Parcels_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-4S756Parcels
-xcp_d/atlases/atlas-4S756Parcels/atlas-4S756Parcels_dseg.json
-xcp_d/atlases/atlas-4S756Parcels/atlas-4S756Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S756Parcels/space-fsLR_atlas-4S756Parcels_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-4S856Parcels
-xcp_d/atlases/atlas-4S856Parcels/atlas-4S856Parcels_dseg.json
-xcp_d/atlases/atlas-4S856Parcels/atlas-4S856Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S856Parcels/space-fsLR_atlas-4S856Parcels_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-4S956Parcels
-xcp_d/atlases/atlas-4S956Parcels/atlas-4S956Parcels_dseg.json
-xcp_d/atlases/atlas-4S956Parcels/atlas-4S956Parcels_dseg.tsv
-xcp_d/atlases/atlas-4S956Parcels/space-fsLR_atlas-4S956Parcels_den-91k_dseg.dlabel.nii
 xcp_d/atlases/atlas-Glasser
 xcp_d/atlases/atlas-Glasser/atlas-Glasser_dseg.json
 xcp_d/atlases/atlas-Glasser/atlas-Glasser_dseg.tsv
 xcp_d/atlases/atlas-Glasser/space-fsLR_atlas-Glasser_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-Gordon
-xcp_d/atlases/atlas-Gordon/atlas-Gordon_dseg.json
-xcp_d/atlases/atlas-Gordon/atlas-Gordon_dseg.tsv
-xcp_d/atlases/atlas-Gordon/space-fsLR_atlas-Gordon_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-HCP
-xcp_d/atlases/atlas-HCP/atlas-HCP_dseg.json
-xcp_d/atlases/atlas-HCP/atlas-HCP_dseg.tsv
-xcp_d/atlases/atlas-HCP/space-fsLR_atlas-HCP_den-91k_dseg.dlabel.nii
-xcp_d/atlases/atlas-Tian
-xcp_d/atlases/atlas-Tian/atlas-Tian_dseg.json
-xcp_d/atlases/atlas-Tian/atlas-Tian_dseg.tsv
-xcp_d/atlases/atlas-Tian/space-fsLR_atlas-Tian_den-91k_dseg.dlabel.nii
 xcp_d/dataset_description.json
 xcp_d/desc-linc_qc.json
 xcp_d/logs
@@ -65,42 +17,12 @@ xcp_d/sub-1648798153/ses-PNC1
 xcp_d/sub-1648798153/ses-PNC1/anat
 xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-MNI152NLin6Asym_desc-preproc_T2w.nii.gz
 xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-MNI152NLin6Asym_dseg.nii.gz
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S1056Parcels_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S1056Parcels_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S1056Parcels_den-91k_desc-thickness_morph.tsv
 xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S156Parcels_den-91k_desc-curv_morph.tsv
 xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S156Parcels_den-91k_desc-sulc_morph.tsv
 xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S156Parcels_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S256Parcels_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S256Parcels_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S256Parcels_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S356Parcels_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S356Parcels_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S356Parcels_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S456Parcels_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S456Parcels_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S456Parcels_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S556Parcels_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S556Parcels_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S556Parcels_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S656Parcels_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S656Parcels_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S656Parcels_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S756Parcels_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S756Parcels_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S756Parcels_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S856Parcels_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S856Parcels_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S856Parcels_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S956Parcels_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S956Parcels_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-4S956Parcels_den-91k_desc-thickness_morph.tsv
 xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-Glasser_den-91k_desc-curv_morph.tsv
 xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-Glasser_den-91k_desc-sulc_morph.tsv
 xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-Glasser_den-91k_desc-thickness_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-Gordon_den-91k_desc-curv_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-Gordon_den-91k_desc-sulc_morph.tsv
-xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_atlas-Gordon_den-91k_desc-thickness_morph.tsv
 xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_den-32k_hemi-L_desc-hcp_inflated.surf.gii
 xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_den-32k_hemi-L_desc-hcp_midthickness.surf.gii
 xcp_d/sub-1648798153/ses-PNC1/anat/sub-1648798153_ses-PNC1_acq-refaced_space-fsLR_den-32k_hemi-L_desc-hcp_vinflated.surf.gii
@@ -120,22 +42,6 @@ xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_desc-filte
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_desc-filtered_motion.tsv
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_outliers.json
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_outliers.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S1056Parcels_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S1056Parcels_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S1056Parcels_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S1056Parcels_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S1056Parcels_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S1056Parcels_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S1056Parcels_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S1056Parcels_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S1056Parcels_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S1056Parcels_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S1056Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S1056Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S1056Parcels_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S1056Parcels_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S1056Parcels_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S1056Parcels_timeseries.tsv
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S156Parcels_alff.json
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S156Parcels_alff.tsv
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S156Parcels_coverage.json
@@ -152,134 +58,6 @@ xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S156Parcels_reho.tsv
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S156Parcels_timeseries.json
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S156Parcels_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S256Parcels_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S256Parcels_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S256Parcels_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S256Parcels_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S256Parcels_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S256Parcels_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S256Parcels_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S256Parcels_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S256Parcels_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S256Parcels_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S256Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S256Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S256Parcels_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S256Parcels_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S256Parcels_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S256Parcels_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S356Parcels_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S356Parcels_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S356Parcels_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S356Parcels_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S356Parcels_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S356Parcels_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S356Parcels_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S356Parcels_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S356Parcels_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S356Parcels_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S356Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S356Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S356Parcels_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S356Parcels_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S356Parcels_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S356Parcels_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S456Parcels_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S456Parcels_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S456Parcels_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S456Parcels_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S456Parcels_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S456Parcels_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S456Parcels_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S456Parcels_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S456Parcels_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S456Parcels_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S456Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S456Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S456Parcels_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S456Parcels_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S456Parcels_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S456Parcels_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S556Parcels_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S556Parcels_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S556Parcels_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S556Parcels_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S556Parcels_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S556Parcels_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S556Parcels_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S556Parcels_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S556Parcels_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S556Parcels_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S556Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S556Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S556Parcels_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S556Parcels_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S556Parcels_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S556Parcels_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S656Parcels_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S656Parcels_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S656Parcels_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S656Parcels_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S656Parcels_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S656Parcels_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S656Parcels_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S656Parcels_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S656Parcels_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S656Parcels_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S656Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S656Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S656Parcels_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S656Parcels_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S656Parcels_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S656Parcels_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S756Parcels_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S756Parcels_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S756Parcels_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S756Parcels_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S756Parcels_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S756Parcels_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S756Parcels_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S756Parcels_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S756Parcels_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S756Parcels_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S756Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S756Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S756Parcels_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S756Parcels_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S756Parcels_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S756Parcels_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S856Parcels_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S856Parcels_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S856Parcels_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S856Parcels_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S856Parcels_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S856Parcels_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S856Parcels_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S856Parcels_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S856Parcels_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S856Parcels_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S856Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S856Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S856Parcels_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S856Parcels_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S856Parcels_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S856Parcels_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S956Parcels_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S956Parcels_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S956Parcels_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S956Parcels_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S956Parcels_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S956Parcels_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S956Parcels_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S956Parcels_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S956Parcels_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S956Parcels_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S956Parcels_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S956Parcels_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S956Parcels_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S956Parcels_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S956Parcels_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-4S956Parcels_timeseries.tsv
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Glasser_alff.json
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Glasser_alff.tsv
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Glasser_coverage.json
@@ -296,54 +74,6 @@ xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Glasser_reho.tsv
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Glasser_timeseries.json
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Glasser_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Gordon_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Gordon_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Gordon_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Gordon_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Gordon_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Gordon_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Gordon_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Gordon_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Gordon_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Gordon_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Gordon_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Gordon_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Gordon_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Gordon_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Gordon_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Gordon_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-HCP_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-HCP_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-HCP_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-HCP_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-HCP_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-HCP_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-HCP_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-HCP_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-HCP_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-HCP_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-HCP_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-HCP_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-HCP_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-HCP_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-HCP_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-HCP_timeseries.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Tian_alff.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Tian_alff.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Tian_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Tian_coverage.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Tian_den-91k_coverage.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Tian_den-91k_coverage.pscalar.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Tian_den-91k_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Tian_den-91k_measure-pearsoncorrelation_conmat.pconn.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Tian_den-91k_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Tian_den-91k_timeseries.ptseries.nii
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Tian_measure-pearsoncorrelation_conmat.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Tian_measure-pearsoncorrelation_conmat.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Tian_reho.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Tian_reho.tsv
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Tian_timeseries.json
-xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_atlas-Tian_timeseries.tsv
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_den-91k_alff.dscalar.nii
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_den-91k_alff.json
 xcp_d/sub-1648798153/ses-PNC1/func/sub-1648798153_ses-PNC1_task-idemo_space-fsLR_den-91k_desc-denoisedSmoothed_bold.dtseries.nii
diff --git a/xcp_d/tests/data/test_ukbiobank_outputs.txt b/xcp_d/tests/data/test_ukbiobank_outputs.txt
index 693c7890b..f87b48f3f 100644
--- a/xcp_d/tests/data/test_ukbiobank_outputs.txt
+++ b/xcp_d/tests/data/test_ukbiobank_outputs.txt
@@ -72,6 +72,8 @@ xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_desc-preproc_design.j
 xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_desc-preproc_design.tsv
 xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_outliers.json
 xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_outliers.tsv
+xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym_alff.json
+xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym_alff.nii.gz
 xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym_atlas-4S1056Parcels_alff.json
 xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym_atlas-4S1056Parcels_alff.tsv
 xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym_atlas-4S1056Parcels_coverage.json
@@ -212,13 +214,11 @@ xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym
 xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym_atlas-Tian_reho.tsv
 xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym_atlas-Tian_timeseries.json
 xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym_atlas-Tian_timeseries.tsv
-xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym_desc-linc_qc.csv
-xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym_alff.json
-xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym_alff.nii.gz
 xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym_desc-denoisedSmoothed_bold.json
 xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym_desc-denoisedSmoothed_bold.nii.gz
 xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym_desc-denoised_bold.json
 xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym_desc-denoised_bold.nii.gz
+xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym_desc-linc_qc.csv
 xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym_desc-smooth_alff.json
 xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym_desc-smooth_alff.nii.gz
 xcp_d/sub-0000001/ses-01/func/sub-0000001_ses-01_task-rest_space-MNI152NLin6Asym_reho.json
diff --git a/xcp_d/tests/test_cli.py b/xcp_d/tests/test_cli.py
index a85283bc7..1e7569b26 100644
--- a/xcp_d/tests/test_cli.py
+++ b/xcp_d/tests/test_cli.py
@@ -49,11 +49,7 @@ def test_ds001419_nifti(data_dir, output_dir, working_dir):
         "--smoothing=6",
         "--motion-filter-type=lp",
         "--band-stop-min=6",
-        "--min-coverage=1",
-        "--exact-time",
-        "80",
-        "100",
-        "200",
+        "--skip-parcellation",
         "--random-seed=8675309",
     ]
     opts = run.get_parser().parse_args(parameters)
@@ -115,6 +111,9 @@ def test_ds001419_cifti(data_dir, output_dir, working_dir):
         "--dummy-scans=auto",
         "--fd-thresh=0.3",
         "--upper-bpf=0.0",
+        "--exact-time",
+        "80",
+        "200",
         f"--fs-license-file={fs_license_file}",
     ]
     opts = run.get_parser().parse_args(parameters)
@@ -233,8 +232,7 @@ def test_pnc_cifti(data_dir, output_dir, working_dir):
         f"--bids-filter-file={filter_file}",
         "--min-time=60",
         "--nuisance-regressors=acompcor_gsr",
-        "--despike",
-        "--head_radius=40",
+        "--head-radius=40",
         "--smoothing=6",
         "--motion-filter-type=notch",
         "--band-stop-min=12",
@@ -246,6 +244,9 @@ def test_pnc_cifti(data_dir, output_dir, working_dir):
         "--dummy-scans=auto",
         "--fd-thresh=0.3",
         "--upper-bpf=0.0",
+        "--atlases",
+        "Tian",
+        "HCP",
     ]
     opts = run.get_parser().parse_args(parameters)
     retval = {}
@@ -328,6 +329,9 @@ def test_pnc_cifti_t2wonly(data_dir, output_dir, working_dir):
         "--dummy-scans=auto",
         "--fd-thresh=0.3",
         "--lower-bpf=0.0",
+        "--atlases",
+        "4S156Parcels",
+        "Glasser",
     ]
     opts = run.get_parser().parse_args(parameters)
     retval = {}
diff --git a/xcp_d/tests/test_cli_run.py b/xcp_d/tests/test_cli_run.py
index a3c43fad5..a9a67dcfa 100644
--- a/xcp_d/tests/test_cli_run.py
+++ b/xcp_d/tests/test_cli_run.py
@@ -40,6 +40,7 @@ def base_opts():
         "cifti": True,
         "process_surfaces": True,
         "fs_license_file": Path(os.environ["FS_LICENSE"]),
+        "atlases": ["Glasser"],
     }
     opts = FakeOptions(**opts_dict)
     return opts
@@ -303,3 +304,29 @@ def test_validate_parameters_19(base_opts, caplog):
 
     assert "Freesurfer license DNE" in caplog.text
     assert return_code == 1
+
+
+def test_validate_parameters_20(base_opts, caplog):
+    """Test run._validate_parameters."""
+    opts = deepcopy(base_opts)
+    opts.atlases = []
+    opts.min_coverage = 0.1
+
+    _, return_code = run._validate_parameters(deepcopy(opts), build_log)
+
+    assert "When no atlases are selected" in caplog.text
+    assert return_code == 0
+
+
+def test_validate_parameters_21(base_opts, caplog):
+    """Test run._validate_parameters."""
+    opts = deepcopy(base_opts)
+    opts.input_type = "ukb"
+    opts.cifti = True
+    opts.process_surfaces = True
+
+    _, return_code = run._validate_parameters(deepcopy(opts), build_log)
+
+    assert "cifti processing (--cifti) will be disabled automatically." in caplog.text
+    assert "(--warp-surfaces-native2std) will be disabled automatically." in caplog.text
+    assert return_code == 0
diff --git a/xcp_d/tests/test_utils_atlas.py b/xcp_d/tests/test_utils_atlas.py
index cbff69091..c6ffeab58 100644
--- a/xcp_d/tests/test_utils_atlas.py
+++ b/xcp_d/tests/test_utils_atlas.py
@@ -7,17 +7,18 @@
 
 
 def test_get_atlas_names():
-    """Test xcp_d.utils.atlas.get_atlas_names."""
-    atlas_names = atlas.get_atlas_names("all")
-    assert isinstance(atlas_names, list)
-    assert all(isinstance(name, str) for name in atlas_names)
+    """Test xcp_d.utils.atlas.select_atlases."""
+    selected_atlases = atlas.select_atlases(atlases=["4S156Parcels", "4S256Parcels"], subset="all")
+    assert isinstance(selected_atlases, list)
+    assert all(isinstance(name, str) for name in selected_atlases)
+    assert len(selected_atlases) == 2
 
 
 def test_get_atlas_nifti():
     """Test xcp_d.utils.atlas.get_atlas_nifti."""
-    atlas_names = atlas.get_atlas_names("all")
-    for atlas_name in atlas_names:
-        atlas_file, atlas_labels_file, metadata_file = atlas.get_atlas_nifti(atlas_name)
+    selected_atlases = atlas.select_atlases(atlases=["4S156Parcels", "4S256Parcels"], subset="all")
+    for selected_atlas in selected_atlases:
+        atlas_file, atlas_labels_file, metadata_file = atlas.get_atlas_nifti(selected_atlas)
         assert isinstance(atlas_file, str)
         assert isinstance(atlas_labels_file, str)
         assert isinstance(metadata_file, str)
@@ -31,9 +32,9 @@ def test_get_atlas_nifti():
 
 def test_get_atlas_cifti():
     """Test xcp_d.utils.atlas.get_atlas_cifti."""
-    atlas_names = atlas.get_atlas_names("all")
-    for atlas_name in atlas_names:
-        atlas_file, atlas_labels_file, metadata_file = atlas.get_atlas_cifti(atlas_name)
+    selected_atlases = atlas.select_atlases(atlases=["4S156Parcels", "4S256Parcels"], subset="all")
+    for selected_atlas in selected_atlases:
+        atlas_file, atlas_labels_file, metadata_file = atlas.get_atlas_cifti(selected_atlas)
         assert isinstance(atlas_file, str)
         assert isinstance(atlas_labels_file, str)
         assert isinstance(metadata_file, str)
diff --git a/xcp_d/tests/test_workflows_connectivity.py b/xcp_d/tests/test_workflows_connectivity.py
index 75ae25971..f38bff27e 100644
--- a/xcp_d/tests/test_workflows_connectivity.py
+++ b/xcp_d/tests/test_workflows_connectivity.py
@@ -33,6 +33,7 @@ def test_init_load_atlases_wf_nifti(ds001419_data, tmp_path_factory):
     bold_file = ds001419_data["nifti_file"]
 
     load_atlases_wf = init_load_atlases_wf(
+        atlases=["4S156Parcels", "Glasser"],
         output_dir=tmpdir,
         cifti=False,
         mem_gb=1,
@@ -45,7 +46,7 @@ def test_init_load_atlases_wf_nifti(ds001419_data, tmp_path_factory):
     load_atlases_wf_res = load_atlases_wf.run()
     nodes = get_nodes(load_atlases_wf_res)
     atlas_names = nodes["load_atlases_wf.warp_atlases_to_bold_space"].get_output("output_image")
-    assert len(atlas_names) == 14
+    assert len(atlas_names) == 2
 
 
 def test_init_load_atlases_wf_cifti(ds001419_data, tmp_path_factory):
@@ -55,6 +56,7 @@ def test_init_load_atlases_wf_cifti(ds001419_data, tmp_path_factory):
     bold_file = ds001419_data["cifti_file"]
 
     load_atlases_wf = init_load_atlases_wf(
+        atlases=["4S156Parcels", "Glasser"],
         output_dir=tmpdir,
         cifti=True,
         mem_gb=1,
@@ -67,7 +69,7 @@ def test_init_load_atlases_wf_cifti(ds001419_data, tmp_path_factory):
     load_atlases_wf_res = load_atlases_wf.run()
     nodes = get_nodes(load_atlases_wf_res)
     atlas_names = nodes["load_atlases_wf.ds_atlas"].get_output("out_file")
-    assert len(atlas_names) == 14
+    assert len(atlas_names) == 2
 
 
 def test_init_functional_connectivity_nifti_wf(ds001419_data, tmp_path_factory):
@@ -139,7 +141,7 @@ def test_init_functional_connectivity_nifti_wf(ds001419_data, tmp_path_factory):
     connectivity_wf.inputs.inputnode.name_source = bold_file
     connectivity_wf.inputs.inputnode.bold_mask = bold_mask
     connectivity_wf.inputs.inputnode.reho = fake_bold_file
-    connectivity_wf.inputs.inputnode.atlas_names = atlas_names
+    connectivity_wf.inputs.inputnode.atlases = atlas_names
     connectivity_wf.inputs.inputnode.atlas_files = warped_atlases
     connectivity_wf.inputs.inputnode.atlas_labels_files = atlas_labels_files
     connectivity_wf.base_dir = tmpdir
@@ -279,7 +281,7 @@ def test_init_functional_connectivity_cifti_wf(ds001419_data, tmp_path_factory):
     connectivity_wf.inputs.inputnode.temporal_mask = temporal_mask
     connectivity_wf.inputs.inputnode.name_source = bold_file
     connectivity_wf.inputs.inputnode.reho = fake_bold_file
-    connectivity_wf.inputs.inputnode.atlas_names = atlas_names
+    connectivity_wf.inputs.inputnode.atlases = atlas_names
     connectivity_wf.inputs.inputnode.atlas_files = atlas_files
     connectivity_wf.inputs.inputnode.atlas_labels_files = atlas_labels_files
     connectivity_wf.inputs.inputnode.parcellated_atlas_files = parcellated_atlases
diff --git a/xcp_d/utils/atlas.py b/xcp_d/utils/atlas.py
index 57fe7f3a2..cb035f4a6 100644
--- a/xcp_d/utils/atlas.py
+++ b/xcp_d/utils/atlas.py
@@ -1,7 +1,7 @@
 """Functions for working with atlases."""
 
 
-def get_atlas_names(subset):
+def select_atlases(atlases, subset):
     """Get a list of atlases to be used for parcellation and functional connectivity analyses.
 
     The actual list of files for the atlases is loaded from a different function.
@@ -10,7 +10,8 @@ def get_atlas_names(subset):
 
     Parameters
     ----------
-    subset = {"all", "subcortical", "cortical"}
+    atlases : None or list of str
+    subset : {"all", "subcortical", "cortical"}
         Description of the subset of atlases to collect.
 
     Returns
@@ -18,7 +19,7 @@ def get_atlas_names(subset):
     :obj:`list` of :obj:`str`
         List of atlases.
     """
-    atlases = {
+    BUILTIN_ATLASES = {
         "cortical": [
             "4S156Parcels",
             "4S256Parcels",
@@ -38,11 +39,20 @@ def get_atlas_names(subset):
             "HCP",
         ],
     }
-    atlases["all"] = sorted(list(set(atlases["cortical"] + atlases["subcortical"])))
-    return atlases[subset]
+    BUILTIN_ATLASES["all"] = sorted(
+        list(set(BUILTIN_ATLASES["cortical"] + BUILTIN_ATLASES["subcortical"]))
+    )
+    subset_atlases = BUILTIN_ATLASES[subset]
+    if atlases:
+        assert all([atlas in BUILTIN_ATLASES["all"] for atlas in atlases])
+        selected_atlases = [atlas for atlas in atlases if atlas in subset_atlases]
+    else:
+        selected_atlases = subset_atlases
+
+    return selected_atlases
 
 
-def get_atlas_nifti(atlas_name):
+def get_atlas_nifti(atlas):
     """Select atlas by name from xcp_d/data using pkgrf.
 
     All atlases are in MNI space.
@@ -51,10 +61,10 @@ def get_atlas_nifti(atlas_name):
 
     Parameters
     ----------
-    atlas_name : {"4S156Parcels", "4S256Parcels", "4S356Parcels", "4S456Parcels", \
-                  "4S556Parcels", "4S656Parcels", "4S756Parcels", "4S856Parcels", \
-                  "4S956Parcels", "4S1056Parcels", "Glasser", "Gordon", \
-                  "Tian", "HCP"}
+    atlas : {"4S156Parcels", "4S256Parcels", "4S356Parcels", "4S456Parcels", \
+             "4S556Parcels", "4S656Parcels", "4S756Parcels", "4S856Parcels", \
+             "4S956Parcels", "4S1056Parcels", "Glasser", "Gordon", \
+             "Tian", "HCP"}
         The name of the NIFTI atlas to fetch.
 
     Returns
@@ -70,25 +80,25 @@ def get_atlas_nifti(atlas_name):
 
     from pkg_resources import resource_filename as pkgrf
 
-    if "4S" in atlas_name or atlas_name in ("Glasser", "Gordon"):
+    if "4S" in atlas or atlas in ("Glasser", "Gordon"):
         # 1 mm3 atlases
-        atlas_fname = f"tpl-MNI152NLin6Asym_atlas-{atlas_name}_res-01_dseg.nii.gz"
-        tsv_fname = f"atlas-{atlas_name}_dseg.tsv"
+        atlas_fname = f"tpl-MNI152NLin6Asym_atlas-{atlas}_res-01_dseg.nii.gz"
+        tsv_fname = f"atlas-{atlas}_dseg.tsv"
     else:
         # 2 mm3 atlases
-        atlas_fname = f"tpl-MNI152NLin6Asym_atlas-{atlas_name}_res-02_dseg.nii.gz"
-        tsv_fname = f"atlas-{atlas_name}_dseg.tsv"
+        atlas_fname = f"tpl-MNI152NLin6Asym_atlas-{atlas}_res-02_dseg.nii.gz"
+        tsv_fname = f"atlas-{atlas}_dseg.tsv"
 
-    if "4S" in atlas_name:
+    if "4S" in atlas:
         atlas_file = join("/AtlasPack", atlas_fname)
         atlas_labels_file = join("/AtlasPack", tsv_fname)
-        atlas_metadata_file = f"/AtlasPack/tpl-MNI152NLin6Asym_atlas-{atlas_name}_dseg.json"
+        atlas_metadata_file = f"/AtlasPack/tpl-MNI152NLin6Asym_atlas-{atlas}_dseg.json"
     else:
         atlas_file = pkgrf("xcp_d", f"data/atlases/{atlas_fname}")
         atlas_labels_file = pkgrf("xcp_d", f"data/atlases/{tsv_fname}")
         atlas_metadata_file = pkgrf(
             "xcp_d",
-            f"data/atlases/tpl-MNI152NLin6Asym_atlas-{atlas_name}_dseg.json",
+            f"data/atlases/tpl-MNI152NLin6Asym_atlas-{atlas}_dseg.json",
         )
 
     if not (isfile(atlas_file) and isfile(atlas_labels_file) and isfile(atlas_metadata_file)):
@@ -99,7 +109,7 @@ def get_atlas_nifti(atlas_name):
     return atlas_file, atlas_labels_file, atlas_metadata_file
 
 
-def get_atlas_cifti(atlas_name):
+def get_atlas_cifti(atlas):
     """Select atlas by name from xcp_d/data.
 
     All atlases are in 91K space.
@@ -108,10 +118,10 @@ def get_atlas_cifti(atlas_name):
 
     Parameters
     ----------
-    atlas_name : {"4S156Parcels", "4S256Parcels", "4S356Parcels", "4S456Parcels", \
-                  "4S556Parcels", "4S656Parcels", "4S756Parcels", "4S856Parcels", \
-                  "4S956Parcels", "4S1056Parcels", "Glasser", "Gordon", \
-                  "Tian", "HCP"}
+    atlas : {"4S156Parcels", "4S256Parcels", "4S356Parcels", "4S456Parcels", \
+             "4S556Parcels", "4S656Parcels", "4S756Parcels", "4S856Parcels", \
+             "4S956Parcels", "4S1056Parcels", "Glasser", "Gordon", \
+             "Tian", "HCP"}
         The name of the CIFTI atlas to fetch.
 
     Returns
@@ -127,17 +137,17 @@ def get_atlas_cifti(atlas_name):
 
     from pkg_resources import resource_filename as pkgrf
 
-    if "4S" in atlas_name:
-        atlas_file = f"/AtlasPack/tpl-fsLR_atlas-{atlas_name}_den-91k_dseg.dlabel.nii"
-        atlas_labels_file = f"/AtlasPack/atlas-{atlas_name}_dseg.tsv"
-        atlas_metadata_file = f"/AtlasPack/tpl-fsLR_atlas-{atlas_name}_dseg.json"
+    if "4S" in atlas:
+        atlas_file = f"/AtlasPack/tpl-fsLR_atlas-{atlas}_den-91k_dseg.dlabel.nii"
+        atlas_labels_file = f"/AtlasPack/atlas-{atlas}_dseg.tsv"
+        atlas_metadata_file = f"/AtlasPack/tpl-fsLR_atlas-{atlas}_dseg.json"
     else:
         atlas_file = pkgrf(
             "xcp_d",
-            f"data/atlases/tpl-fsLR_atlas-{atlas_name}_den-32k_dseg.dlabel.nii",
+            f"data/atlases/tpl-fsLR_atlas-{atlas}_den-32k_dseg.dlabel.nii",
         )
-        atlas_labels_file = pkgrf("xcp_d", f"data/atlases/atlas-{atlas_name}_dseg.tsv")
-        atlas_metadata_file = pkgrf("xcp_d", f"data/atlases/tpl-fsLR_atlas-{atlas_name}_dseg.json")
+        atlas_labels_file = pkgrf("xcp_d", f"data/atlases/atlas-{atlas}_dseg.tsv")
+        atlas_metadata_file = pkgrf("xcp_d", f"data/atlases/tpl-fsLR_atlas-{atlas}_dseg.json")
 
     if not (isfile(atlas_file) and isfile(atlas_labels_file) and isfile(atlas_metadata_file)):
         raise FileNotFoundError(
diff --git a/xcp_d/utils/doc.py b/xcp_d/utils/doc.py
index 3ce623a1a..5e1875460 100644
--- a/xcp_d/utils/doc.py
+++ b/xcp_d/utils/doc.py
@@ -497,14 +497,11 @@
 """
 
 docdict[
-    "atlas_names"
+    "atlases"
 ] = """
-atlas_names : :obj:`list` of :obj:`str`
+atlases : :obj:`list` of :obj:`str`
     A list of atlases used for parcellating the BOLD data.
-    The list of atlas names is generated by :func:`xcp_d.utils.atlas.get_atlas_names`.
-    The atlases include: "4S156Parcels", "4S256Parcels", "4S356Parcels", "4S456Parcels",
-    "4S556Parcels", "4S656Parcels", "4S756Parcels", "4S856Parcels", "4S956Parcels",
-    "4S1056Parcels", "Glasser", "Gordon", "Tian", and "HCP".
+    The set of atlases to use is defined by the user.
 """
 
 docdict[
diff --git a/xcp_d/workflows/base.py b/xcp_d/workflows/base.py
index 793de70b8..1963b182f 100644
--- a/xcp_d/workflows/base.py
+++ b/xcp_d/workflows/base.py
@@ -75,6 +75,7 @@ def init_xcpd_wf(
     custom_confounds_folder,
     dummy_scans,
     random_seed,
+    atlases,
     exact_time,
     cifti,
     omp_nthreads,
@@ -132,15 +133,16 @@ def init_xcpd_wf(
                 custom_confounds_folder=None,
                 dummy_scans=0,
                 random_seed=None,
-                exact_time=[],
                 cifti=False,
                 omp_nthreads=1,
                 layout=None,
                 process_surfaces=False,
                 dcan_qc=False,
                 input_type="fmriprep",
-                min_coverage=0.5,
                 min_time=100,
+                atlases=["Glasser"],
+                min_coverage=0.5,
+                exact_time=[],
                 combineruns=False,
                 name="xcpd_wf",
             )
@@ -179,8 +181,9 @@ def init_xcpd_wf(
     %(process_surfaces)s
     %(dcan_qc)s
     %(input_type)s
-    %(min_coverage)s
     %(min_time)s
+    %(atlases)s
+    %(min_coverage)s
     %(exact_time)s
     combineruns
     %(name)s
@@ -224,8 +227,9 @@ def init_xcpd_wf(
             process_surfaces=process_surfaces,
             dcan_qc=dcan_qc,
             input_type=input_type,
-            min_coverage=min_coverage,
             min_time=min_time,
+            atlases=atlases,
+            min_coverage=min_coverage,
             exact_time=exact_time,
             combineruns=combineruns,
             name=f"single_subject_{subject_id}_wf",
@@ -273,8 +277,9 @@ def init_subject_wf(
     fd_thresh,
     despike,
     dcan_qc,
-    min_coverage,
     min_time,
+    atlases,
+    min_coverage,
     exact_time,
     omp_nthreads,
     layout,
@@ -298,6 +303,7 @@ def init_subject_wf(
                 input_type="fmriprep",
                 process_surfaces=False,
                 combineruns=False,
+                atlases=["Glasser"],
                 cifti=False,
                 task_id="imagery",
                 bids_filters=None,
@@ -334,6 +340,7 @@ def init_subject_wf(
     %(input_type)s
     %(process_surfaces)s
     combineruns
+    atlases
     %(cifti)s
     task_id : :obj:`str` or None
         Task ID of BOLD  series to be selected for postprocess , or ``None`` to postprocess all
@@ -524,7 +531,6 @@ def init_subject_wf(
         name="postprocess_anat_wf",
     )
 
-    # fmt:off
     workflow.connect([
         (inputnode, postprocess_anat_wf, [
             ("t1w", "inputnode.t1w"),
@@ -532,19 +538,20 @@ def init_subject_wf(
             ("anat_dseg", "inputnode.anat_dseg"),
             ("anat_to_template_xfm", "inputnode.anat_to_template_xfm"),
         ]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     # Load the atlases, warping to the same space as the BOLD data if necessary.
-    load_atlases_wf = init_load_atlases_wf(
-        output_dir=output_dir,
-        cifti=cifti,
-        mem_gb=1,
-        omp_nthreads=omp_nthreads,
-        name="load_atlases_wf",
-    )
-    load_atlases_wf.inputs.inputnode.name_source = preproc_files[0]
-    load_atlases_wf.inputs.inputnode.bold_file = preproc_files[0]
+    if atlases:
+        load_atlases_wf = init_load_atlases_wf(
+            atlases=atlases,
+            output_dir=output_dir,
+            cifti=cifti,
+            mem_gb=1,
+            omp_nthreads=omp_nthreads,
+            name="load_atlases_wf",
+        )
+        load_atlases_wf.inputs.inputnode.name_source = preproc_files[0]
+        load_atlases_wf.inputs.inputnode.bold_file = preproc_files[0]
 
     if process_surfaces or (dcan_qc and mesh_available):
         # Run surface post-processing workflow if we want to warp meshes to standard space *or*
@@ -565,7 +572,6 @@ def init_subject_wf(
             name="postprocess_surfaces_wf",
         )
 
-        # fmt:off
         workflow.connect([
             (inputnode, postprocess_surfaces_wf, [
                 ("lh_pial_surf", "inputnode.lh_pial_surf"),
@@ -575,42 +581,36 @@ def init_subject_wf(
                 ("anat_to_template_xfm", "inputnode.anat_to_template_xfm"),
                 ("template_to_anat_xfm", "inputnode.template_to_anat_xfm"),
             ]),
-        ])
-        # fmt:on
+        ])  # fmt:skip
 
         for morph_file in morph_file_types:
-            # fmt:off
             workflow.connect([
                 (inputnode, postprocess_surfaces_wf, [(morph_file, f"inputnode.{morph_file}")]),
-            ])
-            # fmt:on
+            ])  # fmt:skip
 
         if process_surfaces or standard_space_mesh:
             # Use standard-space structurals
-            # fmt:off
             workflow.connect([
                 (postprocess_anat_wf, postprocess_surfaces_wf, [
                     ("outputnode.t1w", "inputnode.t1w"),
                     ("outputnode.t2w", "inputnode.t2w"),
                 ]),
-            ])
-            # fmt:on
+            ])  # fmt:skip
 
         else:
             # Use native-space structurals
-            # fmt:off
             workflow.connect([
                 (inputnode, postprocess_surfaces_wf, [
                     ("t1w", "inputnode.t1w"),
                     ("t2w", "inputnode.t2w"),
                 ]),
-            ])
-            # fmt:on
+            ])  # fmt:skip
 
-        if morph_file_types:
+        if morph_file_types and atlases:
             # Parcellate the morphometry files
             parcellate_surfaces_wf = init_parcellate_surfaces_wf(
                 output_dir=output_dir,
+                atlases=atlases,
                 files_to_parcellate=morph_file_types,
                 min_coverage=min_coverage,
                 mem_gb=1,
@@ -619,13 +619,11 @@ def init_subject_wf(
             )
 
             for morph_file_type in morph_file_types:
-                # fmt:off
                 workflow.connect([
                     (inputnode, parcellate_surfaces_wf, [
                         (morph_file_type, f"inputnode.{morph_file_type}"),
                     ]),
-                ])
-                # fmt:on
+                ])  # fmt:skip
 
     # Estimate head radius, if necessary
     head_radius = estimate_brain_radius(
@@ -728,6 +726,7 @@ def init_subject_wf(
                 custom_confounds_folder=custom_confounds_folder,
                 dummy_scans=dummy_scans,
                 random_seed=random_seed,
+                atlases=atlases,
                 fd_thresh=fd_thresh,
                 despike=despike,
                 dcan_qc=dcan_qc,
@@ -743,48 +742,44 @@ def init_subject_wf(
             )
             run_counter += 1
 
-            # fmt:off
             workflow.connect([
                 (postprocess_anat_wf, postprocess_bold_wf, [
                     ("outputnode.t1w", "inputnode.t1w"),
                     ("outputnode.t2w", "inputnode.t2w"),
                 ]),
-                (load_atlases_wf, postprocess_bold_wf, [
-                    ("outputnode.atlas_names", "inputnode.atlas_names"),
-                    ("outputnode.atlas_files", "inputnode.atlas_files"),
-                    ("outputnode.atlas_labels_files", "inputnode.atlas_labels_files"),
-                ]),
-            ])
-            # fmt:on
+            ])  # fmt:skip
 
-            if cifti:
-                # fmt:off
+            if atlases:
                 workflow.connect([
                     (load_atlases_wf, postprocess_bold_wf, [
-                        (
-                            "outputnode.parcellated_atlas_files",
-                            "inputnode.parcellated_atlas_files",
-                        ),
+                        ("outputnode.atlas_files", "inputnode.atlas_files"),
+                        ("outputnode.atlas_labels_files", "inputnode.atlas_labels_files"),
                     ]),
-                ])
-                # fmt:on
-            else:
-                # fmt:off
+                ])  # fmt:skip
+
+                if cifti:
+                    workflow.connect([
+                        (load_atlases_wf, postprocess_bold_wf, [
+                            (
+                                "outputnode.parcellated_atlas_files",
+                                "inputnode.parcellated_atlas_files",
+                            ),
+                        ]),
+                    ])  # fmt:skip
+
+            if not cifti:
                 workflow.connect([
                     (inputnode, postprocess_bold_wf, [
                         ("anat_brainmask", "inputnode.anat_brainmask"),
                         ("template_to_anat_xfm", "inputnode.template_to_anat_xfm"),
                     ]),
-                ])
-                # fmt:on
+                ])  # fmt:skip
 
             if combineruns and (n_task_runs > 1):
                 for io_name, node in merge_dict.items():
-                    # fmt:off
                     workflow.connect([
                         (postprocess_bold_wf, node, [(f"outputnode.{io_name}", f"in{j_run + 1}")]),
-                    ])
-                    # fmt:on
+                    ])  # fmt:skip
 
         if combineruns and (n_task_runs > 1):
             concatenate_data_wf = init_concatenate_data_wf(
@@ -797,32 +792,26 @@ def init_subject_wf(
                 cifti=cifti,
                 dcan_qc=dcan_qc,
                 fd_thresh=fd_thresh,
+                atlases=atlases,
                 mem_gb=1,
                 omp_nthreads=omp_nthreads,
                 name=f"concatenate_entity_set_{ent_set}_wf",
             )
 
-            # fmt:off
             workflow.connect([
                 (inputnode, concatenate_data_wf, [
                     ("anat_brainmask", "inputnode.anat_brainmask"),
                     ("template_to_anat_xfm", "inputnode.template_to_anat_xfm"),
                 ]),
-                (load_atlases_wf, concatenate_data_wf, [
-                    ("outputnode.atlas_names", "inputnode.atlas_names"),
-                ]),
-            ])
-            # fmt:on
+            ])  # fmt:skip
 
             for io_name, node in merge_dict.items():
                 workflow.connect([(node, concatenate_data_wf, [("out", f"inputnode.{io_name}")])])
 
-    # fmt:off
     workflow.connect([
         (summary, ds_report_summary, [("out_report", "in_file")]),
         (about, ds_report_about, [("out_report", "in_file")]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     for node in workflow.list_node_names():
         if node.split(".")[-1].startswith("ds_"):
diff --git a/xcp_d/workflows/bold.py b/xcp_d/workflows/bold.py
index 7798dff24..478ce9e41 100644
--- a/xcp_d/workflows/bold.py
+++ b/xcp_d/workflows/bold.py
@@ -52,6 +52,7 @@ def init_postprocess_nifti_wf(
     t1w_available,
     t2w_available,
     n_runs,
+    atlases,
     min_coverage,
     exact_scans,
     random_seed,
@@ -118,6 +119,7 @@ def init_postprocess_nifti_wf(
                 t1w_available=True,
                 t2w_available=True,
                 n_runs=1,
+                atlases=["Glasser"],
                 min_coverage=0.5,
                 exact_scans=[],
                 random_seed=None,
@@ -156,6 +158,7 @@ def init_postprocess_nifti_wf(
     n_runs
         Number of runs being postprocessed by XCP-D.
         This is just used for the boilerplate, as this workflow only posprocesses one run.
+    %(atlases)s
     %(min_coverage)s
     %(exact_scans)s
     %(random_seed)s
@@ -203,7 +206,6 @@ def init_postprocess_nifti_wf(
     %(smoothed_denoised_bold)s
     %(boldref)s
     bold_mask
-    %(atlas_names)s
     %(timeseries)s
     %(timeseries_ciftis)s
         This will not be defined.
@@ -230,7 +232,8 @@ def init_postprocess_nifti_wf(
                 "fmriprep_confounds_file",
                 "fmriprep_confounds_json",
                 "dummy_scans",
-                "atlas_names",
+                # if parcellation is performed
+                "atlases",
                 "atlas_files",
                 "atlas_labels_files",
             ],
@@ -244,6 +247,7 @@ def init_postprocess_nifti_wf(
     inputnode.inputs.fmriprep_confounds_file = run_data["confounds"]
     inputnode.inputs.fmriprep_confounds_json = run_data["confounds_json"]
     inputnode.inputs.dummy_scans = dummy_scans
+    inputnode.inputs.atlases = atlases
 
     # Load custom confounds
     # We need to run this function directly to access information in the confounds that is
@@ -272,6 +276,7 @@ def init_postprocess_nifti_wf(
                 "smoothed_denoised_bold",
                 "boldref",
                 "bold_mask",
+                # if parcellation is performed
                 "timeseries",
                 "timeseries_ciftis",  # will not be defined
             ],
@@ -288,7 +293,6 @@ def init_postprocess_nifti_wf(
         n_procs=omp_nthreads,
     )
 
-    # fmt:off
     workflow.connect([
         (inputnode, outputnode, [("bold_file", "name_source")]),
         (inputnode, downcast_data, [
@@ -300,8 +304,7 @@ def init_postprocess_nifti_wf(
             ("bold_mask", "bold_mask"),
             ("boldref", "boldref"),
         ]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     prepare_confounds_wf = init_prepare_confounds_wf(
         output_dir=output_dir,
@@ -322,7 +325,6 @@ def init_postprocess_nifti_wf(
         name="prepare_confounds_wf",
     )
 
-    # fmt:off
     workflow.connect([
         (inputnode, prepare_confounds_wf, [
             ("bold_file", "inputnode.name_source"),
@@ -334,8 +336,7 @@ def init_postprocess_nifti_wf(
             ("outputnode.fmriprep_confounds_file", "fmriprep_confounds_file"),
             ("outputnode.preprocessed_bold", "preprocessed_bold"),
         ]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     denoise_bold_wf = init_denoise_bold_wf(
         TR=TR,
@@ -350,7 +351,6 @@ def init_postprocess_nifti_wf(
         name="denoise_bold_wf",
     )
 
-    # fmt:off
     workflow.connect([
         (downcast_data, denoise_bold_wf, [("bold_mask", "inputnode.mask")]),
         (prepare_confounds_wf, denoise_bold_wf, [
@@ -360,8 +360,7 @@ def init_postprocess_nifti_wf(
         (denoise_bold_wf, outputnode, [
             ("outputnode.uncensored_denoised_bold", "uncensored_denoised_bold"),
         ]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     if despike:
         despike_wf = init_despike_wf(
@@ -372,7 +371,6 @@ def init_postprocess_nifti_wf(
             name="despike_wf",
         )
 
-        # fmt:off
         workflow.connect([
             (prepare_confounds_wf, despike_wf, [
                 ("outputnode.preprocessed_bold", "inputnode.bold_file"),
@@ -380,43 +378,14 @@ def init_postprocess_nifti_wf(
             (despike_wf, denoise_bold_wf, [
                 ("outputnode.bold_file", "inputnode.preprocessed_bold"),
             ]),
-        ])
-        # fmt:on
+        ])  # fmt:skip
 
     else:
-        # fmt:off
         workflow.connect([
             (prepare_confounds_wf, denoise_bold_wf, [
                 ("outputnode.preprocessed_bold", "inputnode.preprocessed_bold"),
             ]),
-        ])
-        # fmt:on
-
-    connectivity_wf = init_functional_connectivity_nifti_wf(
-        output_dir=output_dir,
-        min_coverage=min_coverage,
-        alff_available=bandpass_filter,
-        mem_gb=mem_gbx["timeseries"],
-        name="connectivity_wf",
-    )
-
-    # fmt:off
-    workflow.connect([
-        (inputnode, connectivity_wf, [
-            ("bold_file", "inputnode.name_source"),
-            ("atlas_names", "inputnode.atlas_names"),
-            ("atlas_files", "inputnode.atlas_files"),
-            ("atlas_labels_files", "inputnode.atlas_labels_files"),
-        ]),
-        (downcast_data, connectivity_wf, [("bold_mask", "inputnode.bold_mask")]),
-        (prepare_confounds_wf, connectivity_wf, [
-            ("outputnode.temporal_mask", "inputnode.temporal_mask"),
-        ]),
-        (denoise_bold_wf, connectivity_wf, [
-            ("outputnode.censored_denoised_bold", "inputnode.denoised_bold"),
-        ]),
-    ])
-    # fmt:on
+        ])  # fmt:skip
 
     if bandpass_filter:
         alff_wf = init_alff_wf(
@@ -433,7 +402,6 @@ def init_postprocess_nifti_wf(
             name="alff_wf",
         )
 
-        # fmt:off
         workflow.connect([
             (downcast_data, alff_wf, [("bold_mask", "inputnode.bold_mask")]),
             (prepare_confounds_wf, alff_wf, [
@@ -442,9 +410,7 @@ def init_postprocess_nifti_wf(
             (denoise_bold_wf, alff_wf, [
                 ("outputnode.interpolated_filtered_bold", "inputnode.denoised_bold"),
             ]),
-            (alff_wf, connectivity_wf, [("outputnode.alff", "inputnode.alff")]),
-        ])
-        # fmt:on
+        ])  # fmt:skip
 
     reho_wf = init_reho_nifti_wf(
         name_source=bold_file,
@@ -454,15 +420,12 @@ def init_postprocess_nifti_wf(
         name="reho_wf",
     )
 
-    # fmt:off
     workflow.connect([
         (downcast_data, reho_wf, [("bold_mask", "inputnode.bold_mask")]),
         (denoise_bold_wf, reho_wf, [
             ("outputnode.censored_denoised_bold", "inputnode.denoised_bold"),
         ]),
-        (reho_wf, connectivity_wf, [("outputnode.reho", "inputnode.reho")]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     qc_report_wf = init_qc_report_wf(
         output_dir=output_dir,
@@ -476,7 +439,6 @@ def init_postprocess_nifti_wf(
         name="qc_report_wf",
     )
 
-    # fmt:off
     workflow.connect([
         (inputnode, qc_report_wf, [
             ("bold_file", "inputnode.name_source"),
@@ -497,8 +459,7 @@ def init_postprocess_nifti_wf(
             ("outputnode.interpolated_filtered_bold", "inputnode.interpolated_filtered_bold"),
             ("outputnode.censored_denoised_bold", "inputnode.censored_denoised_bold"),
         ]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     postproc_derivatives_wf = init_postproc_derivatives_wf(
         name_source=bold_file,
@@ -513,6 +474,7 @@ def init_postprocess_nifti_wf(
         smoothing=smoothing,
         params=params,
         exact_scans=exact_scans,
+        atlases=atlases,
         cifti=False,
         dcan_qc=dcan_qc,
         output_dir=output_dir,
@@ -520,11 +482,9 @@ def init_postprocess_nifti_wf(
         name="postproc_derivatives_wf",
     )
 
-    # fmt:off
     workflow.connect([
         (inputnode, postproc_derivatives_wf, [
             ("fmriprep_confounds_file", "inputnode.fmriprep_confounds_file"),
-            ("atlas_names", "inputnode.atlas_names"),
             ("atlas_files", "inputnode.atlas_files"),
         ]),
         (prepare_confounds_wf, postproc_derivatives_wf, [
@@ -542,13 +502,6 @@ def init_postprocess_nifti_wf(
         ]),
         (qc_report_wf, postproc_derivatives_wf, [("outputnode.qc_file", "inputnode.qc_file")]),
         (reho_wf, postproc_derivatives_wf, [("outputnode.reho", "inputnode.reho")]),
-        (connectivity_wf, postproc_derivatives_wf, [
-            ("outputnode.coverage", "inputnode.coverage"),
-            ("outputnode.timeseries", "inputnode.timeseries"),
-            ("outputnode.correlations", "inputnode.correlations"),
-            ("outputnode.correlations_exact", "inputnode.correlations_exact"),
-            ("outputnode.parcellated_reho", "inputnode.parcellated_reho"),
-        ]),
         (postproc_derivatives_wf, outputnode, [
             ("outputnode.filtered_motion", "filtered_motion"),
             ("outputnode.temporal_mask", "temporal_mask"),
@@ -557,21 +510,56 @@ def init_postprocess_nifti_wf(
             ("outputnode.smoothed_denoised_bold", "smoothed_denoised_bold"),
             ("outputnode.timeseries", "timeseries"),
         ]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     if bandpass_filter:
-        # fmt:off
         workflow.connect([
             (alff_wf, postproc_derivatives_wf, [
                 ("outputnode.alff", "inputnode.alff"),
                 ("outputnode.smoothed_alff", "inputnode.smoothed_alff"),
             ]),
+        ])  # fmt:skip
+
+    if atlases:
+        connectivity_wf = init_functional_connectivity_nifti_wf(
+            output_dir=output_dir,
+            min_coverage=min_coverage,
+            alff_available=bandpass_filter,
+            mem_gb=mem_gbx["timeseries"],
+            name="connectivity_wf",
+        )
+
+        workflow.connect([
+            (inputnode, connectivity_wf, [
+                ("bold_file", "inputnode.name_source"),
+                ("atlases", "inputnode.atlases"),
+                ("atlas_files", "inputnode.atlas_files"),
+                ("atlas_labels_files", "inputnode.atlas_labels_files"),
+            ]),
+            (downcast_data, connectivity_wf, [("bold_mask", "inputnode.bold_mask")]),
+            (prepare_confounds_wf, connectivity_wf, [
+                ("outputnode.temporal_mask", "inputnode.temporal_mask"),
+            ]),
+            (denoise_bold_wf, connectivity_wf, [
+                ("outputnode.censored_denoised_bold", "inputnode.denoised_bold"),
+            ]),
+            (reho_wf, connectivity_wf, [("outputnode.reho", "inputnode.reho")]),
             (connectivity_wf, postproc_derivatives_wf, [
-                ("outputnode.parcellated_alff", "inputnode.parcellated_alff"),
+                ("outputnode.coverage", "inputnode.coverage"),
+                ("outputnode.timeseries", "inputnode.timeseries"),
+                ("outputnode.correlations", "inputnode.correlations"),
+                ("outputnode.correlations_exact", "inputnode.correlations_exact"),
+                ("outputnode.parcellated_reho", "inputnode.parcellated_reho"),
             ]),
-        ])
-        # fmt:on
+        ])  # fmt:skip
+
+        if bandpass_filter:
+            workflow.connect([
+                (alff_wf, connectivity_wf, [("outputnode.alff", "inputnode.alff")]),
+                (connectivity_wf, postproc_derivatives_wf, [
+                    ("outputnode.parcellated_alff", "inputnode.parcellated_alff"),
+                ]),
+            ])  # fmt:skip
 
     # executive summary workflow
     execsummary_functional_plots_wf = init_execsummary_functional_plots_wf(
@@ -583,7 +571,6 @@ def init_postprocess_nifti_wf(
         name="execsummary_functional_plots_wf",
     )
 
-    # fmt:off
     workflow.connect([
         # Use inputnode for executive summary instead of downcast_data
         # because T1w is used as name source.
@@ -592,8 +579,7 @@ def init_postprocess_nifti_wf(
             ("t1w", "inputnode.t1w"),
             ("t2w", "inputnode.t2w"),
         ]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     return workflow
 
diff --git a/xcp_d/workflows/cifti.py b/xcp_d/workflows/cifti.py
index 66b4cb5d5..204fa357f 100644
--- a/xcp_d/workflows/cifti.py
+++ b/xcp_d/workflows/cifti.py
@@ -52,6 +52,7 @@ def init_postprocess_cifti_wf(
     t1w_available,
     t2w_available,
     n_runs,
+    atlases,
     min_coverage,
     exact_scans,
     random_seed,
@@ -116,6 +117,7 @@ def init_postprocess_cifti_wf(
                 t1w_available=True,
                 t2w_available=True,
                 n_runs=1,
+                atlases=["Glasser"],
                 min_coverage=0.5,
                 exact_scans=[],
                 random_seed=None,
@@ -152,6 +154,7 @@ def init_postprocess_cifti_wf(
     n_runs
         Number of runs being postprocessed by XCP-D.
         This is just used for the boilerplate, as this workflow only posprocesses one run.
+    %(atlases)s
     %(min_coverage)s
     %(random_seed)s
     %(exact_scans)s
@@ -192,7 +195,6 @@ def init_postprocess_cifti_wf(
     %(boldref)s
     bold_mask
         This will not be defined.
-    %(atlas_names)s
     %(timeseries)s
     %(timeseries_ciftis)s
 
@@ -215,7 +217,8 @@ def init_postprocess_cifti_wf(
                 "fmriprep_confounds_file",
                 "fmriprep_confounds_json",
                 "dummy_scans",
-                "atlas_names",
+                # if parcellation is performed
+                "atlases",
                 "atlas_files",
                 "atlas_labels_files",
                 "parcellated_atlas_files",
@@ -229,6 +232,7 @@ def init_postprocess_cifti_wf(
     inputnode.inputs.fmriprep_confounds_file = run_data["confounds"]
     inputnode.inputs.fmriprep_confounds_json = run_data["confounds_json"]
     inputnode.inputs.dummy_scans = dummy_scans
+    inputnode.inputs.atlases = atlases
 
     # Load custom confounds
     # We need to run this function directly to access information in the confounds that is
@@ -259,7 +263,7 @@ def init_postprocess_cifti_wf(
                 "smoothed_denoised_bold",
                 "boldref",
                 "bold_mask",  # will not be defined
-                "atlas_names",
+                # if parcellation is performed
                 "timeseries",
                 "timeseries_ciftis",
             ],
@@ -276,15 +280,13 @@ def init_postprocess_cifti_wf(
         n_procs=omp_nthreads,
     )
 
-    # fmt:off
     workflow.connect([
         (inputnode, outputnode, [
             ("bold_file", "name_source"),
             ("boldref", "boldref"),
         ]),
         (inputnode, downcast_data, [("bold_file", "bold_file")]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     prepare_confounds_wf = init_prepare_confounds_wf(
         output_dir=output_dir,
@@ -305,7 +307,6 @@ def init_postprocess_cifti_wf(
         name="prepare_confounds_wf",
     )
 
-    # fmt:off
     workflow.connect([
         (inputnode, prepare_confounds_wf, [
             ("bold_file", "inputnode.name_source"),
@@ -319,8 +320,7 @@ def init_postprocess_cifti_wf(
             ("outputnode.fmriprep_confounds_file", "fmriprep_confounds_file"),
             ("outputnode.preprocessed_bold", "preprocessed_bold"),
         ]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     denoise_bold_wf = init_denoise_bold_wf(
         TR=TR,
@@ -335,7 +335,6 @@ def init_postprocess_cifti_wf(
         name="denoise_bold_wf",
     )
 
-    # fmt:off
     workflow.connect([
         (prepare_confounds_wf, denoise_bold_wf, [
             ("outputnode.temporal_mask", "inputnode.temporal_mask"),
@@ -344,8 +343,7 @@ def init_postprocess_cifti_wf(
         (denoise_bold_wf, outputnode, [
             ("outputnode.uncensored_denoised_bold", "uncensored_denoised_bold"),
         ]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     if despike:
         despike_wf = init_despike_wf(
@@ -356,7 +354,6 @@ def init_postprocess_cifti_wf(
             name="despike_wf",
         )
 
-        # fmt:off
         workflow.connect([
             (prepare_confounds_wf, despike_wf, [
                 ("outputnode.preprocessed_bold", "inputnode.bold_file"),
@@ -364,44 +361,14 @@ def init_postprocess_cifti_wf(
             (despike_wf, denoise_bold_wf, [
                 ("outputnode.bold_file", "inputnode.preprocessed_bold"),
             ]),
-        ])
-        # fmt:on
+        ])  # fmt:skip
 
     else:
-        # fmt:off
         workflow.connect([
             (prepare_confounds_wf, denoise_bold_wf, [
                 ("outputnode.preprocessed_bold", "inputnode.preprocessed_bold"),
             ]),
-        ])
-        # fmt:on
-
-    connectivity_wf = init_functional_connectivity_cifti_wf(
-        min_coverage=min_coverage,
-        alff_available=bandpass_filter,
-        output_dir=output_dir,
-        mem_gb=mem_gbx["timeseries"],
-        omp_nthreads=omp_nthreads,
-        name="connectivity_wf",
-    )
-
-    # fmt:off
-    workflow.connect([
-        (inputnode, connectivity_wf, [
-            ("bold_file", "inputnode.name_source"),
-            ("atlas_names", "inputnode.atlas_names"),
-            ("atlas_files", "inputnode.atlas_files"),
-            ("atlas_labels_files", "inputnode.atlas_labels_files"),
-            ("parcellated_atlas_files", "inputnode.parcellated_atlas_files"),
-        ]),
-        (prepare_confounds_wf, connectivity_wf, [
-            ("outputnode.temporal_mask", "inputnode.temporal_mask"),
-        ]),
-        (denoise_bold_wf, connectivity_wf, [
-            ("outputnode.censored_denoised_bold", "inputnode.denoised_bold"),
-        ]),
-    ])
-    # fmt:on
+        ])  # fmt:skip
 
     if bandpass_filter:
         alff_wf = init_alff_wf(
@@ -418,7 +385,6 @@ def init_postprocess_cifti_wf(
             name="alff_wf",
         )
 
-        # fmt:off
         workflow.connect([
             (prepare_confounds_wf, alff_wf, [
                 ("outputnode.temporal_mask", "inputnode.temporal_mask"),
@@ -426,9 +392,7 @@ def init_postprocess_cifti_wf(
             (denoise_bold_wf, alff_wf, [
                 ("outputnode.interpolated_filtered_bold", "inputnode.denoised_bold"),
             ]),
-            (alff_wf, connectivity_wf, [("outputnode.alff", "inputnode.alff")]),
-        ])
-        # fmt:on
+        ])  # fmt:skip
 
     reho_wf = init_reho_cifti_wf(
         name_source=bold_file,
@@ -438,14 +402,11 @@ def init_postprocess_cifti_wf(
         name="reho_wf",
     )
 
-    # fmt:off
     workflow.connect([
         (denoise_bold_wf, reho_wf, [
             ("outputnode.censored_denoised_bold", "inputnode.denoised_bold"),
         ]),
-        (reho_wf, connectivity_wf, [("outputnode.reho", "inputnode.reho")]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     qc_report_wf = init_qc_report_wf(
         output_dir=output_dir,
@@ -459,7 +420,6 @@ def init_postprocess_cifti_wf(
         name="qc_report_wf",
     )
 
-    # fmt:off
     workflow.connect([
         (inputnode, qc_report_wf, [("bold_file", "inputnode.name_source")]),
         (prepare_confounds_wf, qc_report_wf, [
@@ -474,8 +434,7 @@ def init_postprocess_cifti_wf(
             ("outputnode.interpolated_filtered_bold", "inputnode.interpolated_filtered_bold"),
             ("outputnode.censored_denoised_bold", "inputnode.censored_denoised_bold"),
         ]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     postproc_derivatives_wf = init_postproc_derivatives_wf(
         name_source=bold_file,
@@ -490,6 +449,7 @@ def init_postprocess_cifti_wf(
         smoothing=smoothing,
         params=params,
         exact_scans=exact_scans,
+        atlases=atlases,
         cifti=True,
         dcan_qc=dcan_qc,
         output_dir=output_dir,
@@ -497,11 +457,9 @@ def init_postprocess_cifti_wf(
         name="postproc_derivatives_wf",
     )
 
-    # fmt:off
     workflow.connect([
         (inputnode, postproc_derivatives_wf, [
             ("fmriprep_confounds_file", "inputnode.fmriprep_confounds_file"),
-            ("atlas_names", "inputnode.atlas_names"),
             ("atlas_files", "inputnode.atlas_files"),
         ]),
         (denoise_bold_wf, postproc_derivatives_wf, [
@@ -519,17 +477,6 @@ def init_postprocess_cifti_wf(
             ("outputnode.temporal_mask_metadata", "inputnode.temporal_mask_metadata"),
         ]),
         (reho_wf, postproc_derivatives_wf, [("outputnode.reho", "inputnode.reho")]),
-        (connectivity_wf, postproc_derivatives_wf, [
-            ("outputnode.coverage_ciftis", "inputnode.coverage_ciftis"),
-            ("outputnode.timeseries_ciftis", "inputnode.timeseries_ciftis"),
-            ("outputnode.correlation_ciftis", "inputnode.correlation_ciftis"),
-            ("outputnode.correlation_ciftis_exact", "inputnode.correlation_ciftis_exact"),
-            ("outputnode.coverage", "inputnode.coverage"),
-            ("outputnode.timeseries", "inputnode.timeseries"),
-            ("outputnode.correlations", "inputnode.correlations"),
-            ("outputnode.correlations_exact", "inputnode.correlations_exact"),
-            ("outputnode.parcellated_reho", "inputnode.parcellated_reho"),
-        ]),
         (postproc_derivatives_wf, outputnode, [
             ("outputnode.filtered_motion", "filtered_motion"),
             ("outputnode.temporal_mask", "temporal_mask"),
@@ -539,7 +486,7 @@ def init_postprocess_cifti_wf(
             ("outputnode.timeseries", "timeseries"),
             ("outputnode.timeseries_ciftis", "timeseries_ciftis"),
         ]),
-    ])
+    ])  # fmt:skip
 
     if bandpass_filter:
         workflow.connect([
@@ -547,11 +494,53 @@ def init_postprocess_cifti_wf(
                 ("outputnode.alff", "inputnode.alff"),
                 ("outputnode.smoothed_alff", "inputnode.smoothed_alff"),
             ]),
+        ])  # fmt:skip
+
+    if atlases:
+        connectivity_wf = init_functional_connectivity_cifti_wf(
+            min_coverage=min_coverage,
+            alff_available=bandpass_filter,
+            output_dir=output_dir,
+            mem_gb=mem_gbx["timeseries"],
+            omp_nthreads=omp_nthreads,
+            name="connectivity_wf",
+        )
+
+        workflow.connect([
+            (inputnode, connectivity_wf, [
+                ("bold_file", "inputnode.name_source"),
+                ("atlases", "inputnode.atlases"),
+                ("atlas_files", "inputnode.atlas_files"),
+                ("atlas_labels_files", "inputnode.atlas_labels_files"),
+                ("parcellated_atlas_files", "inputnode.parcellated_atlas_files"),
+            ]),
+            (prepare_confounds_wf, connectivity_wf, [
+                ("outputnode.temporal_mask", "inputnode.temporal_mask"),
+            ]),
+            (denoise_bold_wf, connectivity_wf, [
+                ("outputnode.censored_denoised_bold", "inputnode.denoised_bold"),
+            ]),
+            (reho_wf, connectivity_wf, [("outputnode.reho", "inputnode.reho")]),
             (connectivity_wf, postproc_derivatives_wf, [
-                ("outputnode.parcellated_alff", "inputnode.parcellated_alff"),
+                ("outputnode.coverage_ciftis", "inputnode.coverage_ciftis"),
+                ("outputnode.timeseries_ciftis", "inputnode.timeseries_ciftis"),
+                ("outputnode.correlation_ciftis", "inputnode.correlation_ciftis"),
+                ("outputnode.correlation_ciftis_exact", "inputnode.correlation_ciftis_exact"),
+                ("outputnode.coverage", "inputnode.coverage"),
+                ("outputnode.timeseries", "inputnode.timeseries"),
+                ("outputnode.correlations", "inputnode.correlations"),
+                ("outputnode.correlations_exact", "inputnode.correlations_exact"),
+                ("outputnode.parcellated_reho", "inputnode.parcellated_reho"),
             ]),
-        ])
-    # fmt:on
+        ])  # fmt:skip
+
+        if bandpass_filter:
+            workflow.connect([
+                (alff_wf, connectivity_wf, [("outputnode.alff", "inputnode.alff")]),
+                (connectivity_wf, postproc_derivatives_wf, [
+                    ("outputnode.parcellated_alff", "inputnode.parcellated_alff"),
+                ]),
+            ])  # fmt:skip
 
     # executive summary workflow
     execsummary_functional_plots_wf = init_execsummary_functional_plots_wf(
@@ -563,19 +552,14 @@ def init_postprocess_cifti_wf(
         name="execsummary_functional_plots_wf",
     )
 
-    # Use inputnode for executive summary instead of downcast_data
-    # because T1w is used as name source.
-    # fmt:off
     workflow.connect([
-        # Use inputnode for executive summary instead of downcast_data
-        # because T1w is used as name source.
+        # Use inputnode for executive summary instead of downcast_data because T1w is name source.
         (inputnode, execsummary_functional_plots_wf, [
             ("boldref", "inputnode.boldref"),
             ("t1w", "inputnode.t1w"),
             ("t2w", "inputnode.t2w"),
         ]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     return workflow
 
diff --git a/xcp_d/workflows/concatenation.py b/xcp_d/workflows/concatenation.py
index c53d89287..ad9395c4f 100644
--- a/xcp_d/workflows/concatenation.py
+++ b/xcp_d/workflows/concatenation.py
@@ -27,6 +27,7 @@ def init_concatenate_data_wf(
     cifti,
     dcan_qc,
     fd_thresh,
+    atlases,
     mem_gb,
     omp_nthreads,
     name="concatenate_data_wf",
@@ -50,6 +51,7 @@ def init_concatenate_data_wf(
                 cifti=False,
                 dcan_qc=True,
                 fd_thresh=0.3,
+                atlases=[],
                 mem_gb=0.1,
                 omp_nthreads=1,
                 name="concatenate_data_wf",
@@ -65,7 +67,8 @@ def init_concatenate_data_wf(
     %(smoothing)s
     %(cifti)s
     %(dcan_qc)s
-    fd_thresh
+    %(fd_thresh)s
+    %(atlases)s
     %(mem_gb)s
     %(omp_nthreads)s
     %(name)s
@@ -94,8 +97,6 @@ def init_concatenate_data_wf(
     anat_brainmask : :obj:`str`
     %(template_to_anat_xfm)s
     %(boldref)s
-    %(atlas_names)s
-        This will be a list of strings.
     %(timeseries)s
         This will be a list of lists, with one sublist for each run.
     %(timeseries_ciftis)s
@@ -123,7 +124,6 @@ def init_concatenate_data_wf(
                 "boldref",  # only for niftis, from postproc workflows
                 "anat_brainmask",  # only for niftis, from data collection
                 "template_to_anat_xfm",  # only for niftis, from data collection
-                "atlas_names",
                 "timeseries",
                 "timeseries_ciftis",  # only for ciftis, from postproc workflows
             ],
@@ -142,7 +142,6 @@ def init_concatenate_data_wf(
         name="filter_runs",
     )
 
-    # fmt:off
     workflow.connect([
         (inputnode, filter_runs, [
             ("preprocessed_bold", "preprocessed_bold"),
@@ -158,15 +157,13 @@ def init_concatenate_data_wf(
             ("timeseries", "timeseries"),
             ("timeseries_ciftis", "timeseries_ciftis"),
         ])
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     concatenate_inputs = pe.Node(
         ConcatenateInputs(),
         name="concatenate_inputs",
     )
 
-    # fmt:off
     workflow.connect([
         (filter_runs, concatenate_inputs, [
             ("preprocessed_bold", "preprocessed_bold"),
@@ -180,8 +177,7 @@ def init_concatenate_data_wf(
             ("timeseries", "timeseries"),
             ("timeseries_ciftis", "timeseries_ciftis"),
         ]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     # Now, run the QC report workflow on the concatenated BOLD file.
     qc_report_wf = init_qc_report_wf(
@@ -197,7 +193,6 @@ def init_concatenate_data_wf(
     )
     qc_report_wf.inputs.inputnode.dummy_scans = 0
 
-    # fmt:off
     workflow.connect([
         (inputnode, qc_report_wf, [
             ("template_to_anat_xfm", "inputnode.template_to_anat_xfm"),
@@ -219,8 +214,7 @@ def init_concatenate_data_wf(
             ("temporal_mask", "inputnode.temporal_mask"),
             ("run_index", "inputnode.run_index"),
         ]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     ds_filtered_motion = pe.Node(
         DerivativesDataSink(
@@ -234,16 +228,13 @@ def init_concatenate_data_wf(
         run_without_submitting=True,
         mem_gb=1,
     )
-
-    # fmt:off
     workflow.connect([
         (clean_name_source, ds_filtered_motion, [("name_source", "source_file")]),
         (concatenate_inputs, ds_filtered_motion, [("filtered_motion", "in_file")]),
         (filter_runs, ds_filtered_motion, [
             (("filtered_motion", _make_xcpd_uri, output_dir), "Sources"),
         ]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     ds_temporal_mask = pe.Node(
         DerivativesDataSink(
@@ -257,109 +248,13 @@ def init_concatenate_data_wf(
         mem_gb=1,
     )
 
-    # fmt:off
     workflow.connect([
         (clean_name_source, ds_temporal_mask, [("name_source", "source_file")]),
         (concatenate_inputs, ds_temporal_mask, [("temporal_mask", "in_file")]),
         (filter_runs, ds_temporal_mask, [
             (("temporal_mask", _make_xcpd_uri, output_dir), "Sources"),
         ]),
-    ])
-    # fmt:on
-
-    make_timeseries_dict = pe.MapNode(
-        niu.Function(
-            function=_make_dictionary,
-            input_names=["Sources"],
-            output_names=["metadata"],
-        ),
-        run_without_submitting=True,
-        mem_gb=1,
-        name="make_timeseries_dict",
-        iterfield=["Sources"],
-    )
-    # fmt:off
-    workflow.connect([
-        (filter_runs, make_timeseries_dict, [
-            (("timeseries", _make_xcpd_uri_lol, output_dir), "Sources"),
-        ]),
-    ])
-    # fmt:on
-
-    ds_timeseries = pe.MapNode(
-        DerivativesDataSink(
-            base_directory=output_dir,
-            dismiss_entities=["desc"],
-            suffix="timeseries",
-            extension=".tsv",
-            # Metadata
-            SamplingFrequency="TR",
-        ),
-        name="ds_timeseries",
-        run_without_submitting=True,
-        mem_gb=1,
-        iterfield=["atlas", "in_file", "meta_dict"],
-    )
-
-    # fmt:off
-    workflow.connect([
-        (inputnode, ds_timeseries, [("atlas_names", "atlas")]),
-        (clean_name_source, ds_timeseries, [("name_source", "source_file")]),
-        (concatenate_inputs, ds_timeseries, [("timeseries", "in_file")]),
-        (make_timeseries_dict, ds_timeseries, [("metadata", "meta_dict")]),
-    ])
-    # fmt:on
-
-    correlate_timeseries = pe.MapNode(
-        TSVConnect(),
-        run_without_submitting=True,
-        mem_gb=1,
-        name="correlate_timeseries",
-        iterfield=["timeseries"],
-    )
-    workflow.connect([(concatenate_inputs, correlate_timeseries, [("timeseries", "timeseries")])])
-
-    make_correlations_dict = pe.MapNode(
-        niu.Function(
-            function=_make_dictionary,
-            input_names=["Sources"],
-            output_names=["metadata"],
-        ),
-        run_without_submitting=True,
-        mem_gb=1,
-        name="make_correlations_dict",
-        iterfield=["Sources"],
-    )
-    # fmt:off
-    workflow.connect([
-        (ds_timeseries, make_correlations_dict, [
-            (("out_file", _make_xcpd_uri, output_dir), "Sources"),
-        ]),
-    ])
-    # fmt:on
-
-    ds_correlations = pe.MapNode(
-        DerivativesDataSink(
-            base_directory=output_dir,
-            dismiss_entities=["desc"],
-            measure="pearsoncorrelation",
-            suffix="conmat",
-            extension=".tsv",
-        ),
-        name="ds_correlations",
-        run_without_submitting=True,
-        mem_gb=1,
-        iterfield=["atlas", "in_file", "meta_dict"],
-    )
-
-    # fmt:off
-    workflow.connect([
-        (inputnode, ds_correlations, [("atlas_names", "atlas")]),
-        (clean_name_source, ds_correlations, [("name_source", "source_file")]),
-        (correlate_timeseries, ds_correlations, [("correlations", "in_file")]),
-        (make_correlations_dict, ds_correlations, [("metadata", "meta_dict")]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     if cifti:
         ds_censored_filtered_bold = pe.Node(
@@ -375,49 +270,6 @@ def init_concatenate_data_wf(
             mem_gb=2,
         )
 
-        make_timeseries_ciftis_dict = pe.MapNode(
-            niu.Function(
-                function=_make_dictionary,
-                input_names=["Sources"],
-                output_names=["metadata"],
-            ),
-            run_without_submitting=True,
-            mem_gb=1,
-            name="make_timeseries_ciftis_dict",
-            iterfield=["Sources"],
-        )
-        # fmt:off
-        workflow.connect([
-            (filter_runs, make_timeseries_ciftis_dict, [
-                (("timeseries_ciftis", _make_xcpd_uri_lol, output_dir), "Sources"),
-            ]),
-        ])
-        # fmt:on
-
-        ds_timeseries_cifti_files = pe.MapNode(
-            DerivativesDataSink(
-                base_directory=output_dir,
-                check_hdr=False,
-                dismiss_entities=["desc", "den"],
-                den="91k",
-                suffix="timeseries",
-                extension=".ptseries.nii",
-            ),
-            name="ds_timeseries_cifti_files",
-            run_without_submitting=True,
-            mem_gb=1,
-            iterfield=["atlas", "in_file", "meta_dict"],
-        )
-
-        # fmt:off
-        workflow.connect([
-            (clean_name_source, ds_timeseries_cifti_files, [("name_source", "source_file")]),
-            (inputnode, ds_timeseries_cifti_files, [("atlas_names", "atlas")]),
-            (concatenate_inputs, ds_timeseries_cifti_files, [("timeseries_ciftis", "in_file")]),
-            (make_timeseries_ciftis_dict, ds_timeseries_cifti_files, [("metadata", "meta_dict")]),
-        ])
-        # fmt:on
-
         if smoothing:
             ds_smoothed_denoised_bold = pe.Node(
                 DerivativesDataSink(
@@ -485,18 +337,15 @@ def init_concatenate_data_wf(
                 mem_gb=2,
             )
 
-    # fmt:off
     workflow.connect([
         (clean_name_source, ds_censored_filtered_bold, [("name_source", "source_file")]),
         (concatenate_inputs, ds_censored_filtered_bold, [("censored_denoised_bold", "in_file")]),
         (filter_runs, ds_censored_filtered_bold, [
             (("censored_denoised_bold", _make_xcpd_uri, output_dir), "Sources"),
         ]),
-    ])
-    # fmt:on
+    ])  # fmt:skip
 
     if smoothing:
-        # fmt:off
         workflow.connect([
             (clean_name_source, ds_smoothed_denoised_bold, [("name_source", "source_file")]),
             (concatenate_inputs, ds_smoothed_denoised_bold, [
@@ -505,11 +354,9 @@ def init_concatenate_data_wf(
             (filter_runs, ds_smoothed_denoised_bold, [
                 (("smoothed_denoised_bold", _make_xcpd_uri, output_dir), "Sources"),
             ]),
-        ])
-        # fmt:on
+        ])  # fmt:skip
 
     if dcan_qc:
-        # fmt:off
         workflow.connect([
             (clean_name_source, ds_interpolated_filtered_bold, [("name_source", "source_file")]),
             (concatenate_inputs, ds_interpolated_filtered_bold, [
@@ -518,7 +365,140 @@ def init_concatenate_data_wf(
             (filter_runs, ds_interpolated_filtered_bold, [
                 (("interpolated_filtered_bold", _make_xcpd_uri, output_dir), "Sources"),
             ]),
-        ])
-        # fmt:on
+        ])  # fmt:skip
+
+    # Functional connectivity outputs
+    if atlases:
+        make_timeseries_dict = pe.MapNode(
+            niu.Function(
+                function=_make_dictionary,
+                input_names=["Sources"],
+                output_names=["metadata"],
+            ),
+            run_without_submitting=True,
+            mem_gb=1,
+            name="make_timeseries_dict",
+            iterfield=["Sources"],
+        )
+        workflow.connect([
+            (filter_runs, make_timeseries_dict, [
+                (("timeseries", _make_xcpd_uri_lol, output_dir), "Sources"),
+            ]),
+        ])  # fmt:skip
+
+        ds_timeseries = pe.MapNode(
+            DerivativesDataSink(
+                base_directory=output_dir,
+                dismiss_entities=["desc"],
+                suffix="timeseries",
+                extension=".tsv",
+                # Metadata
+                SamplingFrequency="TR",
+            ),
+            name="ds_timeseries",
+            run_without_submitting=True,
+            mem_gb=1,
+            iterfield=["atlas", "in_file", "meta_dict"],
+        )
+        ds_timeseries.inputs.atlas = atlases
+
+        workflow.connect([
+            (clean_name_source, ds_timeseries, [("name_source", "source_file")]),
+            (concatenate_inputs, ds_timeseries, [("timeseries", "in_file")]),
+            (make_timeseries_dict, ds_timeseries, [("metadata", "meta_dict")]),
+        ])  # fmt:skip
+
+        correlate_timeseries = pe.MapNode(
+            TSVConnect(),
+            run_without_submitting=True,
+            mem_gb=1,
+            name="correlate_timeseries",
+            iterfield=["timeseries"],
+        )
+        workflow.connect([
+            (concatenate_inputs, correlate_timeseries, [("timeseries", "timeseries")]),
+        ])  # fmt:skip
+
+        make_correlations_dict = pe.MapNode(
+            niu.Function(
+                function=_make_dictionary,
+                input_names=["Sources"],
+                output_names=["metadata"],
+            ),
+            run_without_submitting=True,
+            mem_gb=1,
+            name="make_correlations_dict",
+            iterfield=["Sources"],
+        )
+        workflow.connect([
+            (ds_timeseries, make_correlations_dict, [
+                (("out_file", _make_xcpd_uri, output_dir), "Sources"),
+            ]),
+        ])  # fmt:skip
+
+        ds_correlations = pe.MapNode(
+            DerivativesDataSink(
+                base_directory=output_dir,
+                dismiss_entities=["desc"],
+                measure="pearsoncorrelation",
+                suffix="conmat",
+                extension=".tsv",
+            ),
+            name="ds_correlations",
+            run_without_submitting=True,
+            mem_gb=1,
+            iterfield=["atlas", "in_file", "meta_dict"],
+        )
+        ds_correlations.inputs.atlas = atlases
+
+        workflow.connect([
+            (clean_name_source, ds_correlations, [("name_source", "source_file")]),
+            (correlate_timeseries, ds_correlations, [("correlations", "in_file")]),
+            (make_correlations_dict, ds_correlations, [("metadata", "meta_dict")]),
+        ])  # fmt:skip
+
+        if cifti:
+            make_timeseries_ciftis_dict = pe.MapNode(
+                niu.Function(
+                    function=_make_dictionary,
+                    input_names=["Sources"],
+                    output_names=["metadata"],
+                ),
+                run_without_submitting=True,
+                mem_gb=1,
+                name="make_timeseries_ciftis_dict",
+                iterfield=["Sources"],
+            )
+            workflow.connect([
+                (filter_runs, make_timeseries_ciftis_dict, [
+                    (("timeseries_ciftis", _make_xcpd_uri_lol, output_dir), "Sources"),
+                ]),
+            ])  # fmt:skip
+
+            ds_timeseries_cifti_files = pe.MapNode(
+                DerivativesDataSink(
+                    base_directory=output_dir,
+                    check_hdr=False,
+                    dismiss_entities=["desc", "den"],
+                    den="91k",
+                    suffix="timeseries",
+                    extension=".ptseries.nii",
+                ),
+                name="ds_timeseries_cifti_files",
+                run_without_submitting=True,
+                mem_gb=1,
+                iterfield=["atlas", "in_file", "meta_dict"],
+            )
+            ds_timeseries_cifti_files.inputs.atlas = atlases
+
+            workflow.connect([
+                (clean_name_source, ds_timeseries_cifti_files, [("name_source", "source_file")]),
+                (concatenate_inputs, ds_timeseries_cifti_files, [
+                    ("timeseries_ciftis", "in_file"),
+                ]),
+                (make_timeseries_ciftis_dict, ds_timeseries_cifti_files, [
+                    ("metadata", "meta_dict"),
+                ]),
+            ])  # fmt:skip
 
     return workflow
diff --git a/xcp_d/workflows/connectivity.py b/xcp_d/workflows/connectivity.py
index cd3d16a19..1e8e5dc96 100644
--- a/xcp_d/workflows/connectivity.py
+++ b/xcp_d/workflows/connectivity.py
@@ -1,7 +1,7 @@
 # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
 # vi: set ft=python sts=4 ts=4 sw=4 et:
 """Workflows for extracting time series and computing functional connectivity."""
-from nipype import Function
+from nipype import Function, logging
 from nipype.interfaces import utility as niu
 from nipype.pipeline import engine as pe
 from niworkflows.engine.workflows import LiterateWorkflow as Workflow
@@ -24,15 +24,18 @@
 from xcp_d.utils.atlas import (
     copy_atlas,
     get_atlas_cifti,
-    get_atlas_names,
     get_atlas_nifti,
+    select_atlases,
 )
 from xcp_d.utils.doc import fill_doc
 from xcp_d.utils.utils import get_std2bold_xfms
 
+LOGGER = logging.getLogger("nipype.workflow")
+
 
 @fill_doc
 def init_load_atlases_wf(
+    atlases,
     output_dir,
     cifti,
     mem_gb,
@@ -49,6 +52,7 @@ def init_load_atlases_wf(
             from xcp_d.workflows.connectivity import init_load_atlases_wf
 
             wf = init_load_atlases_wf(
+                atlases=["Glasser"],
                 output_dir=".",
                 cifti=True,
                 mem_gb=0.1,
@@ -58,6 +62,7 @@ def init_load_atlases_wf(
 
     Parameters
     ----------
+    %(atlases)s
     %(output_dir)s
     %(cifti)s
     %(mem_gb)s
@@ -72,7 +77,6 @@ def init_load_atlases_wf(
 
     Outputs
     -------
-    atlas_names
     atlas_files
     atlas_labels_files
     parcellated_atlas_files
@@ -91,7 +95,6 @@ def init_load_atlases_wf(
     outputnode = pe.Node(
         niu.IdentityInterface(
             fields=[
-                "atlas_names",
                 "atlas_files",
                 "atlas_labels_files",
                 "parcellated_atlas_files",  # only used for CIFTIs
@@ -100,25 +103,17 @@ def init_load_atlases_wf(
         name="outputnode",
     )
 
-    atlas_name_grabber = pe.Node(
-        Function(input_names=["subset"], output_names=["atlas_names"], function=get_atlas_names),
-        name="atlas_name_grabber",
-    )
-    atlas_name_grabber.inputs.subset = "all"
-
-    workflow.connect([(atlas_name_grabber, outputnode, [("atlas_names", "atlas_names")])])
-
     # get atlases via pkgrf
     atlas_file_grabber = pe.MapNode(
         Function(
-            input_names=["atlas_name"],
+            input_names=["atlas"],
             output_names=["atlas_file", "atlas_labels_file", "atlas_metadata_file"],
             function=get_atlas_cifti if cifti else get_atlas_nifti,
         ),
         name="atlas_file_grabber",
-        iterfield=["atlas_name"],
+        iterfield=["atlas"],
     )
-    workflow.connect([(atlas_name_grabber, atlas_file_grabber, [("atlas_names", "atlas_name")])])
+    atlas_file_grabber.inputs.atlas = atlases
 
     atlas_buffer = pe.Node(niu.IdentityInterface(fields=["atlas_file"]), name="atlas_buffer")
 
@@ -244,11 +239,11 @@ def init_load_atlases_wf(
         run_without_submitting=True,
     )
     ds_atlas.inputs.output_dir = output_dir
+    ds_atlas.inputs.atlas = atlases
 
     # fmt:off
     workflow.connect([
         (inputnode, ds_atlas, [("name_source", "name_source")]),
-        (atlas_name_grabber, ds_atlas, [("atlas_names", "atlas")]),
         (atlas_buffer, ds_atlas, [("atlas_file", "in_file")]),
         (ds_atlas, outputnode, [("out_file", "atlas_files")]),
     ])
@@ -278,11 +273,11 @@ def init_load_atlases_wf(
         iterfield=["atlas", "in_file"],
         run_without_submitting=True,
     )
+    ds_atlas_labels_file.inputs.atlas = atlases
 
     # fmt:off
     workflow.connect([
         (inputnode, ds_atlas_labels_file, [("name_source", "source_file")]),
-        (atlas_name_grabber, ds_atlas_labels_file, [("atlas_names", "atlas")]),
         (atlas_file_grabber, ds_atlas_labels_file, [("atlas_labels_file", "in_file")]),
         (ds_atlas_labels_file, outputnode, [("out_file", "atlas_labels_files")]),
     ])
@@ -312,11 +307,11 @@ def init_load_atlases_wf(
         iterfield=["atlas", "in_file"],
         run_without_submitting=True,
     )
+    ds_atlas_metadata.inputs.atlas = atlases
 
     # fmt:off
     workflow.connect([
         (inputnode, ds_atlas_metadata, [("name_source", "source_file")]),
-        (atlas_name_grabber, ds_atlas_metadata, [("atlas_names", "atlas")]),
         (atlas_file_grabber, ds_atlas_metadata, [("atlas_metadata_file", "in_file")]),
     ])
     # fmt:on
@@ -327,6 +322,7 @@ def init_load_atlases_wf(
 @fill_doc
 def init_parcellate_surfaces_wf(
     output_dir,
+    atlases,
     files_to_parcellate,
     min_coverage,
     mem_gb,
@@ -344,6 +340,7 @@ def init_parcellate_surfaces_wf(
 
             wf = init_parcellate_surfaces_wf(
                 output_dir=".",
+                atlases=["Glasser"],
                 files_to_parcellate=["sulcal_depth", "sulcal_curv", "cortical_thickness"],
                 min_coverage=0.5,
                 mem_gb=0.1,
@@ -354,6 +351,7 @@ def init_parcellate_surfaces_wf(
     Parameters
     ----------
     %(output_dir)s
+    atlases
     files_to_parcellate : :obj:`list` of :obj:`str`
         List of surface file types to parcellate
         (e.g., "sulcal_depth", "sulcal_curv", "cortical_thickness").
@@ -396,24 +394,28 @@ def init_parcellate_surfaces_wf(
         name="inputnode",
     )
 
-    atlas_name_grabber = pe.Node(
-        Function(input_names=["subset"], output_names=["atlas_names"], function=get_atlas_names),
-        name="atlas_name_grabber",
-    )
-    atlas_name_grabber.inputs.subset = "cortical"
+    selected_atlases = select_atlases(atlases=atlases, subset="cortical")
+
+    if not selected_atlases:
+        LOGGER.warning(
+            "No cortical atlases have been selected, so surface metrics will not be parcellated."
+        )
+        # If no cortical atlases are selected, inputnode could go unconnected, so add explicitly.
+        workflow.add_nodes([inputnode])
+
+        return workflow
 
     # Get CIFTI atlases via pkgrf
     atlas_file_grabber = pe.MapNode(
         Function(
-            input_names=["atlas_name"],
+            input_names=["atlas"],
             output_names=["atlas_file", "atlas_labels_file", "atlas_metadata_file"],
             function=get_atlas_cifti,
         ),
         name="atlas_file_grabber",
-        iterfield=["atlas_name"],
+        iterfield=["atlas"],
     )
-
-    workflow.connect([(atlas_name_grabber, atlas_file_grabber, [("atlas_names", "atlas_name")])])
+    atlas_file_grabber.inputs.atlas = selected_atlases
 
     for file_to_parcellate in files_to_parcellate:
         resample_atlas_to_surface = pe.MapNode(
@@ -481,11 +483,11 @@ def init_parcellate_surfaces_wf(
             mem_gb=1,
             iterfield=["atlas", "in_file"],
         )
+        ds_parcellated_surface.inputs.atlas = selected_atlases
 
         # fmt:off
         workflow.connect([
             (inputnode, ds_parcellated_surface, [(file_to_parcellate, "source_file")]),
-            (atlas_name_grabber, ds_parcellated_surface, [("atlas_names", "atlas")]),
             (parcellate_surface, ds_parcellated_surface, [("timeseries", "in_file")]),
         ])
         # fmt:on
@@ -535,7 +537,7 @@ def init_functional_connectivity_nifti_wf(
     %(temporal_mask)s
     alff
     reho
-    %(atlas_names)s
+    %(atlases)s
     atlas_files
     atlas_labels_files
 
@@ -575,7 +577,7 @@ def init_functional_connectivity_nifti_wf(
                 "temporal_mask",
                 "alff",  # may be Undefined
                 "reho",
-                "atlas_names",
+                "atlases",
                 "atlas_files",
                 "atlas_labels_files",
             ],
@@ -685,7 +687,7 @@ def init_functional_connectivity_nifti_wf(
     # fmt:off
     workflow.connect([
         (inputnode, connectivity_plot, [
-            ("atlas_names", "atlas_names"),
+            ("atlases", "atlases"),
             ("atlas_labels_files", "atlas_tsvs"),
         ]),
         (functional_connectivity, connectivity_plot, [("correlations", "correlations_tsv")]),
@@ -758,7 +760,7 @@ def init_functional_connectivity_cifti_wf(
     %(temporal_mask)s
     alff
     reho
-    %(atlas_names)s
+    %(atlases)s
     atlas_files
     atlas_labels_files
     parcellated_atlas_files
@@ -802,7 +804,7 @@ def init_functional_connectivity_cifti_wf(
                 "temporal_mask",
                 "alff",  # may be Undefined
                 "reho",
-                "atlas_names",
+                "atlases",
                 "atlas_files",
                 "atlas_labels_files",
                 "parcellated_atlas_files",
@@ -927,7 +929,7 @@ def init_functional_connectivity_cifti_wf(
     # fmt:off
     workflow.connect([
         (inputnode, connectivity_plot, [
-            ("atlas_names", "atlas_names"),
+            ("atlases", "atlases"),
             ("atlas_labels_files", "atlas_tsvs"),
         ]),
         (functional_connectivity, connectivity_plot, [("correlations", "correlations_tsv")]),
diff --git a/xcp_d/workflows/outputs.py b/xcp_d/workflows/outputs.py
index 9219bbab6..3aa62b194 100644
--- a/xcp_d/workflows/outputs.py
+++ b/xcp_d/workflows/outputs.py
@@ -138,6 +138,7 @@ def init_postproc_derivatives_wf(
     smoothing,
     params,
     exact_scans,
+    atlases,
     cifti,
     dcan_qc,
     output_dir,
@@ -166,6 +167,7 @@ def init_postproc_derivatives_wf(
                 smoothing=6,
                 params="36P",
                 exact_scans=[],
+                atlases=["Glasser"],
                 cifti=False,
                 dcan_qc=True,
                 output_dir=".",
@@ -190,6 +192,7 @@ def init_postproc_derivatives_wf(
     %(smoothing)s
     %(params)s
     %(exact_scans)s
+    %(atlases)s
     %(cifti)s
     %(dcan_qc)s
     output_dir : :obj:`str`
@@ -201,8 +204,6 @@ def init_postproc_derivatives_wf(
 
     Inputs
     ------
-    %(atlas_names)s
-        Used for indexing ``timeseries`` and ``correlations``.
     atlas_files
     %(timeseries)s
     %(correlations)s
@@ -238,7 +239,6 @@ def init_postproc_derivatives_wf(
                 # preprocessing files to use as sources
                 "fmriprep_confounds_file",
                 # postprocessed outputs
-                "atlas_names",
                 "atlas_files",  # for Sources
                 "confounds_file",
                 "confounds_metadata",
@@ -317,23 +317,6 @@ def init_postproc_derivatives_wf(
 
     preproc_bold_src = _make_preproc_uri(name_source, fmri_dir)
 
-    make_atlas_dict = pe.MapNode(
-        niu.Function(
-            function=_make_dictionary,
-            input_names=["Sources"],
-            output_names=["metadata"],
-        ),
-        run_without_submitting=True,
-        mem_gb=1,
-        name="make_atlas_dict",
-        iterfield=["Sources"],
-    )
-    # fmt:off
-    workflow.connect([
-        (inputnode, make_atlas_dict, [(("atlas_files", _make_xcpd_uri, output_dir), "Sources")]),
-    ])
-    # fmt:on
-
     ds_filtered_motion = pe.Node(
         DerivativesDataSink(
             base_directory=output_dir,
@@ -529,27 +512,6 @@ def init_postproc_derivatives_wf(
     )
     workflow.connect([(inputnode, ds_qc_file, [("qc_file", "in_file")])])
 
-    # Convert Sources to a dictionary, to play well with parcellation MapNodes.
-    add_denoised_to_src = pe.MapNode(
-        niu.Function(
-            function=_make_dictionary,
-            input_names=["metadata", "Sources"],
-            output_names=["metadata"],
-        ),
-        run_without_submitting=True,
-        mem_gb=1,
-        name="add_denoised_to_src",
-        iterfield=["metadata"],
-    )
-    # fmt:off
-    workflow.connect([
-        (make_atlas_dict, add_denoised_to_src, [("metadata", "metadata")]),
-        (ds_denoised_bold, add_denoised_to_src, [
-            (("out_file", _make_xcpd_uri, output_dir), "Sources"),
-        ]),
-    ])
-    # fmt:on
-
     if smoothing:
         # Write out derivatives via DerivativesDataSink
         ds_smoothed_bold = pe.Node(
@@ -581,143 +543,26 @@ def init_postproc_derivatives_wf(
         # fmt:on
 
     # Connectivity workflow outputs
-    # TODO: Add brain mask to Sources (for NIfTIs).
-    ds_coverage = pe.MapNode(
-        DerivativesDataSink(
-            base_directory=output_dir,
-            source_file=name_source,
-            dismiss_entities=["desc"],
-            cohort=cohort,
-            suffix="coverage",
-            extension=".tsv",
-        ),
-        name="ds_coverage",
-        run_without_submitting=True,
-        mem_gb=1,
-        iterfield=["atlas", "in_file", "meta_dict"],
-    )
-    # fmt:off
-    workflow.connect([
-        (inputnode, ds_coverage, [
-            ("coverage", "in_file"),
-            ("atlas_names", "atlas"),
-        ]),
-        (make_atlas_dict, ds_coverage, [("metadata", "meta_dict")]),
-    ])
-    # fmt:on
-
-    add_coverage_to_src = pe.MapNode(
-        niu.Function(
-            function=_make_dictionary,
-            input_names=["metadata", "Sources"],
-            output_names=["metadata"],
-        ),
-        run_without_submitting=True,
-        mem_gb=1,
-        name="add_coverage_to_src",
-        iterfield=["metadata", "Sources"],
-    )
-    # fmt:off
-    workflow.connect([
-        (add_denoised_to_src, add_coverage_to_src, [("metadata", "metadata")]),
-        (ds_coverage, add_coverage_to_src, [
-            (("out_file", _make_xcpd_uri, output_dir), "Sources"),
-        ]),
-    ])
-    # fmt:on
-
-    ds_timeseries = pe.MapNode(
-        DerivativesDataSink(
-            base_directory=output_dir,
-            source_file=name_source,
-            dismiss_entities=["desc"],
-            cohort=cohort,
-            suffix="timeseries",
-            extension=".tsv",
-            # Metadata
-            SamplingFrequency="TR",
-        ),
-        name="ds_timeseries",
-        run_without_submitting=True,
-        mem_gb=1,
-        iterfield=["atlas", "in_file", "meta_dict"],
-    )
-    # fmt:off
-    workflow.connect([
-        (inputnode, ds_timeseries, [
-            ("timeseries", "in_file"),
-            ("atlas_names", "atlas"),
-        ]),
-        (add_coverage_to_src, ds_timeseries, [("metadata", "meta_dict")]),
-        (ds_timeseries, outputnode, [("out_file", "timeseries")]),
-    ])
-    # fmt:on
-
-    make_corrs_meta_dict = pe.MapNode(
-        niu.Function(
-            function=_make_dictionary,
-            input_names=["Sources"],
-            output_names=["metadata"],
-        ),
-        run_without_submitting=True,
-        mem_gb=1,
-        name="make_corrs_meta_dict",
-        iterfield=["Sources"],
-    )
-    workflow.connect([(ds_timeseries, make_corrs_meta_dict, [("out_file", "Sources")])])
-
-    ds_correlations = pe.MapNode(
-        DerivativesDataSink(
-            base_directory=output_dir,
-            source_file=name_source,
-            dismiss_entities=["desc"],
-            cohort=cohort,
-            measure="pearsoncorrelation",
-            suffix="conmat",
-            extension=".tsv",
-        ),
-        name="ds_correlations",
-        run_without_submitting=True,
-        mem_gb=1,
-        iterfield=["atlas", "in_file", "meta_dict"],
-    )
-    # fmt:off
-    workflow.connect([
-        (inputnode, ds_correlations, [
-            ("correlations", "in_file"),
-            ("atlas_names", "atlas"),
-        ]),
-        (make_corrs_meta_dict, ds_correlations, [("metadata", "meta_dict")]),
-    ])
-    # fmt:on
-
-    if cifti:
-        ds_coverage_ciftis = pe.MapNode(
-            DerivativesDataSink(
-                base_directory=output_dir,
-                source_file=name_source,
-                check_hdr=False,
-                dismiss_entities=["desc"],
-                cohort=cohort,
-                suffix="coverage",
-                extension=".pscalar.nii",
+    if atlases:
+        make_atlas_dict = pe.MapNode(
+            niu.Function(
+                function=_make_dictionary,
+                input_names=["Sources"],
+                output_names=["metadata"],
             ),
-            name="ds_coverage_ciftis",
             run_without_submitting=True,
             mem_gb=1,
-            iterfield=["atlas", "in_file", "meta_dict"],
+            name="make_atlas_dict",
+            iterfield=["Sources"],
         )
-        # fmt:off
         workflow.connect([
-            (inputnode, ds_coverage_ciftis, [
-                ("coverage_ciftis", "in_file"),
-                ("atlas_names", "atlas"),
+            (inputnode, make_atlas_dict, [
+                (("atlas_files", _make_xcpd_uri, output_dir), "Sources"),
             ]),
-            (add_denoised_to_src, ds_coverage_ciftis, [("metadata", "meta_dict")]),
-        ])
-        # fmt:on
+        ])  # fmt:skip
 
-        add_ccoverage_to_src = pe.MapNode(
+        # Convert Sources to a dictionary, to play well with parcellation MapNodes.
+        add_denoised_to_src = pe.MapNode(
             niu.Function(
                 function=_make_dictionary,
                 input_names=["metadata", "Sources"],
@@ -725,124 +570,268 @@ def init_postproc_derivatives_wf(
             ),
             run_without_submitting=True,
             mem_gb=1,
-            name="add_ccoverage_to_src",
-            iterfield=["metadata", "Sources"],
+            name="add_denoised_to_src",
+            iterfield=["metadata"],
         )
         # fmt:off
         workflow.connect([
-            (add_denoised_to_src, add_ccoverage_to_src, [("metadata", "metadata")]),
-            (ds_coverage_ciftis, add_ccoverage_to_src, [
+            (make_atlas_dict, add_denoised_to_src, [("metadata", "metadata")]),
+            (ds_denoised_bold, add_denoised_to_src, [
                 (("out_file", _make_xcpd_uri, output_dir), "Sources"),
             ]),
         ])
         # fmt:on
 
-        ds_timeseries_ciftis = pe.MapNode(
+        # TODO: Add brain mask to Sources (for NIfTIs).
+        ds_coverage = pe.MapNode(
             DerivativesDataSink(
                 base_directory=output_dir,
                 source_file=name_source,
-                check_hdr=False,
-                dismiss_entities=["desc", "den"],
+                dismiss_entities=["desc"],
                 cohort=cohort,
-                den="91k" if cifti else None,
-                suffix="timeseries",
-                extension=".ptseries.nii",
+                suffix="coverage",
+                extension=".tsv",
             ),
-            name="ds_timeseries_ciftis",
+            name="ds_coverage",
             run_without_submitting=True,
             mem_gb=1,
             iterfield=["atlas", "in_file", "meta_dict"],
         )
+        ds_coverage.inputs.atlas = atlases
         # fmt:off
         workflow.connect([
-            (inputnode, ds_timeseries_ciftis, [
-                ("timeseries_ciftis", "in_file"),
-                ("atlas_names", "atlas"),
-            ]),
-            (add_ccoverage_to_src, ds_timeseries_ciftis, [("metadata", "meta_dict")]),
-            (ds_timeseries_ciftis, outputnode, [("out_file", "timeseries_ciftis")]),
+            (inputnode, ds_coverage, [("coverage", "in_file")]),
+            (make_atlas_dict, ds_coverage, [("metadata", "meta_dict")]),
         ])
         # fmt:on
 
-        make_ccorrs_meta_dict = pe.MapNode(
+        add_coverage_to_src = pe.MapNode(
             niu.Function(
                 function=_make_dictionary,
-                input_names=["Sources"],
+                input_names=["metadata", "Sources"],
                 output_names=["metadata"],
             ),
             run_without_submitting=True,
             mem_gb=1,
-            name="make_ccorrs_meta_dict",
-            iterfield=["Sources"],
+            name="add_coverage_to_src",
+            iterfield=["metadata", "Sources"],
         )
         # fmt:off
         workflow.connect([
-            (ds_timeseries_ciftis, make_ccorrs_meta_dict, [("out_file", "Sources")]),
+            (add_denoised_to_src, add_coverage_to_src, [("metadata", "metadata")]),
+            (ds_coverage, add_coverage_to_src, [
+                (("out_file", _make_xcpd_uri, output_dir), "Sources"),
+            ]),
         ])
         # fmt:on
 
-        ds_correlation_ciftis = pe.MapNode(
+        ds_timeseries = pe.MapNode(
             DerivativesDataSink(
                 base_directory=output_dir,
                 source_file=name_source,
-                check_hdr=False,
-                dismiss_entities=["desc", "den"],
+                dismiss_entities=["desc"],
                 cohort=cohort,
-                den="91k" if cifti else None,
-                measure="pearsoncorrelation",
-                suffix="conmat",
-                extension=".pconn.nii",
+                suffix="timeseries",
+                extension=".tsv",
+                # Metadata
+                SamplingFrequency="TR",
             ),
-            name="ds_correlation_ciftis",
+            name="ds_timeseries",
             run_without_submitting=True,
             mem_gb=1,
             iterfield=["atlas", "in_file", "meta_dict"],
         )
+        ds_timeseries.inputs.atlas = atlases
         # fmt:off
         workflow.connect([
-            (inputnode, ds_correlation_ciftis, [
-                ("correlation_ciftis", "in_file"),
-                ("atlas_names", "atlas"),
-            ]),
-            (make_ccorrs_meta_dict, ds_correlation_ciftis, [("metadata", "meta_dict")]),
+            (inputnode, ds_timeseries, [("timeseries", "in_file")]),
+            (add_coverage_to_src, ds_timeseries, [("metadata", "meta_dict")]),
+            (ds_timeseries, outputnode, [("out_file", "timeseries")]),
         ])
         # fmt:on
 
-    for i_exact_scan, exact_scan in enumerate(exact_scans):
-        select_exact_scan_files = pe.MapNode(
-            niu.Select(index=i_exact_scan),
-            name=f"select_exact_scan_files_{i_exact_scan}",
-            iterfield=["inlist"],
+        make_corrs_meta_dict = pe.MapNode(
+            niu.Function(
+                function=_make_dictionary,
+                input_names=["Sources"],
+                output_names=["metadata"],
+            ),
+            run_without_submitting=True,
+            mem_gb=1,
+            name="make_corrs_meta_dict",
+            iterfield=["Sources"],
         )
-        # fmt:off
-        workflow.connect([
-            (inputnode, select_exact_scan_files, [("correlations_exact", "inlist")]),
-        ])
-        # fmt:on
+        workflow.connect([(ds_timeseries, make_corrs_meta_dict, [("out_file", "Sources")])])
 
-        ds_correlations_exact = pe.MapNode(
+        ds_correlations = pe.MapNode(
             DerivativesDataSink(
                 base_directory=output_dir,
                 source_file=name_source,
                 dismiss_entities=["desc"],
                 cohort=cohort,
                 measure="pearsoncorrelation",
-                desc=f"{exact_scan}volumes",
                 suffix="conmat",
                 extension=".tsv",
             ),
-            name=f"ds_correlations_exact_{i_exact_scan}",
+            name="ds_correlations",
             run_without_submitting=True,
             mem_gb=1,
-            iterfield=["atlas", "in_file"],
+            iterfield=["atlas", "in_file", "meta_dict"],
         )
+        ds_correlations.inputs.atlas = atlases
         # fmt:off
         workflow.connect([
-            (inputnode, ds_correlations_exact, [("atlas_names", "atlas")]),
-            (select_exact_scan_files, ds_correlations_exact, [("out", "in_file")]),
+            (inputnode, ds_correlations, [("correlations", "in_file")]),
+            (make_corrs_meta_dict, ds_correlations, [("metadata", "meta_dict")]),
         ])
         # fmt:on
 
+        if cifti:
+            ds_coverage_ciftis = pe.MapNode(
+                DerivativesDataSink(
+                    base_directory=output_dir,
+                    source_file=name_source,
+                    check_hdr=False,
+                    dismiss_entities=["desc"],
+                    cohort=cohort,
+                    suffix="coverage",
+                    extension=".pscalar.nii",
+                ),
+                name="ds_coverage_ciftis",
+                run_without_submitting=True,
+                mem_gb=1,
+                iterfield=["atlas", "in_file", "meta_dict"],
+            )
+            ds_coverage_ciftis.inputs.atlas = atlases
+            # fmt:off
+            workflow.connect([
+                (inputnode, ds_coverage_ciftis, [("coverage_ciftis", "in_file")]),
+                (add_denoised_to_src, ds_coverage_ciftis, [("metadata", "meta_dict")]),
+            ])
+            # fmt:on
+
+            add_ccoverage_to_src = pe.MapNode(
+                niu.Function(
+                    function=_make_dictionary,
+                    input_names=["metadata", "Sources"],
+                    output_names=["metadata"],
+                ),
+                run_without_submitting=True,
+                mem_gb=1,
+                name="add_ccoverage_to_src",
+                iterfield=["metadata", "Sources"],
+            )
+            # fmt:off
+            workflow.connect([
+                (add_denoised_to_src, add_ccoverage_to_src, [("metadata", "metadata")]),
+                (ds_coverage_ciftis, add_ccoverage_to_src, [
+                    (("out_file", _make_xcpd_uri, output_dir), "Sources"),
+                ]),
+            ])
+            # fmt:on
+
+            ds_timeseries_ciftis = pe.MapNode(
+                DerivativesDataSink(
+                    base_directory=output_dir,
+                    source_file=name_source,
+                    check_hdr=False,
+                    dismiss_entities=["desc", "den"],
+                    cohort=cohort,
+                    den="91k" if cifti else None,
+                    suffix="timeseries",
+                    extension=".ptseries.nii",
+                ),
+                name="ds_timeseries_ciftis",
+                run_without_submitting=True,
+                mem_gb=1,
+                iterfield=["atlas", "in_file", "meta_dict"],
+            )
+            ds_timeseries_ciftis.inputs.atlas = atlases
+            # fmt:off
+            workflow.connect([
+                (inputnode, ds_timeseries_ciftis, [("timeseries_ciftis", "in_file")]),
+                (add_ccoverage_to_src, ds_timeseries_ciftis, [("metadata", "meta_dict")]),
+                (ds_timeseries_ciftis, outputnode, [("out_file", "timeseries_ciftis")]),
+            ])
+            # fmt:on
+
+            make_ccorrs_meta_dict = pe.MapNode(
+                niu.Function(
+                    function=_make_dictionary,
+                    input_names=["Sources"],
+                    output_names=["metadata"],
+                ),
+                run_without_submitting=True,
+                mem_gb=1,
+                name="make_ccorrs_meta_dict",
+                iterfield=["Sources"],
+            )
+            # fmt:off
+            workflow.connect([
+                (ds_timeseries_ciftis, make_ccorrs_meta_dict, [("out_file", "Sources")]),
+            ])
+            # fmt:on
+
+            ds_correlation_ciftis = pe.MapNode(
+                DerivativesDataSink(
+                    base_directory=output_dir,
+                    source_file=name_source,
+                    check_hdr=False,
+                    dismiss_entities=["desc", "den"],
+                    cohort=cohort,
+                    den="91k" if cifti else None,
+                    measure="pearsoncorrelation",
+                    suffix="conmat",
+                    extension=".pconn.nii",
+                ),
+                name="ds_correlation_ciftis",
+                run_without_submitting=True,
+                mem_gb=1,
+                iterfield=["atlas", "in_file", "meta_dict"],
+            )
+            ds_correlation_ciftis.inputs.atlas = atlases
+            # fmt:off
+            workflow.connect([
+                (inputnode, ds_correlation_ciftis, [("correlation_ciftis", "in_file")]),
+                (make_ccorrs_meta_dict, ds_correlation_ciftis, [("metadata", "meta_dict")]),
+            ])
+            # fmt:on
+
+        for i_exact_scan, exact_scan in enumerate(exact_scans):
+            select_exact_scan_files = pe.MapNode(
+                niu.Select(index=i_exact_scan),
+                name=f"select_exact_scan_files_{i_exact_scan}",
+                iterfield=["inlist"],
+            )
+            # fmt:off
+            workflow.connect([
+                (inputnode, select_exact_scan_files, [("correlations_exact", "inlist")]),
+            ])
+            # fmt:on
+
+            ds_correlations_exact = pe.MapNode(
+                DerivativesDataSink(
+                    base_directory=output_dir,
+                    source_file=name_source,
+                    dismiss_entities=["desc"],
+                    cohort=cohort,
+                    measure="pearsoncorrelation",
+                    desc=f"{exact_scan}volumes",
+                    suffix="conmat",
+                    extension=".tsv",
+                ),
+                name=f"ds_correlations_exact_{i_exact_scan}",
+                run_without_submitting=True,
+                mem_gb=1,
+                iterfield=["atlas", "in_file"],
+            )
+            ds_correlations_exact.inputs.atlas = atlases
+            # fmt:off
+            workflow.connect([
+                (select_exact_scan_files, ds_correlations_exact, [("out", "in_file")]),
+            ])
+            # fmt:on
+
     # Resting state metric outputs
     ds_reho = pe.Node(
         DerivativesDataSink(
@@ -869,50 +858,49 @@ def init_postproc_derivatives_wf(
     ])
     # fmt:on
 
-    add_reho_to_src = pe.MapNode(
-        niu.Function(
-            function=_make_dictionary,
-            input_names=["metadata", "Sources"],
-            output_names=["metadata"],
-        ),
-        run_without_submitting=True,
-        mem_gb=1,
-        name="add_reho_to_src",
-        iterfield=["metadata"],
-    )
-    # fmt:off
-    workflow.connect([
-        (make_atlas_dict, add_reho_to_src, [("metadata", "metadata")]),
-        (ds_reho, add_reho_to_src, [(("out_file", _make_xcpd_uri, output_dir), "Sources")]),
-    ])
-    # fmt:on
+    if atlases:
+        add_reho_to_src = pe.MapNode(
+            niu.Function(
+                function=_make_dictionary,
+                input_names=["metadata", "Sources"],
+                output_names=["metadata"],
+            ),
+            run_without_submitting=True,
+            mem_gb=1,
+            name="add_reho_to_src",
+            iterfield=["metadata"],
+        )
+        # fmt:off
+        workflow.connect([
+            (make_atlas_dict, add_reho_to_src, [("metadata", "metadata")]),
+            (ds_reho, add_reho_to_src, [(("out_file", _make_xcpd_uri, output_dir), "Sources")]),
+        ])
+        # fmt:on
 
-    ds_parcellated_reho = pe.MapNode(
-        DerivativesDataSink(
-            base_directory=output_dir,
-            source_file=name_source,
-            dismiss_entities=["desc"],
-            cohort=cohort,
-            suffix="reho",
-            extension=".tsv",
-            # Metadata
-            SoftwareFilters=software_filters,
-            Neighborhood="vertices",
-        ),
-        name="ds_parcellated_reho",
-        run_without_submitting=True,
-        mem_gb=1,
-        iterfield=["atlas", "in_file", "meta_dict"],
-    )
-    # fmt:off
-    workflow.connect([
-        (inputnode, ds_parcellated_reho, [
-            ("parcellated_reho", "in_file"),
-            ("atlas_names", "atlas"),
-        ]),
-        (add_reho_to_src, ds_parcellated_reho, [("metadata", "meta_dict")]),
-    ])
-    # fmt:on
+        ds_parcellated_reho = pe.MapNode(
+            DerivativesDataSink(
+                base_directory=output_dir,
+                source_file=name_source,
+                dismiss_entities=["desc"],
+                cohort=cohort,
+                suffix="reho",
+                extension=".tsv",
+                # Metadata
+                SoftwareFilters=software_filters,
+                Neighborhood="vertices",
+            ),
+            name="ds_parcellated_reho",
+            run_without_submitting=True,
+            mem_gb=1,
+            iterfield=["atlas", "in_file", "meta_dict"],
+        )
+        ds_parcellated_reho.inputs.atlas = atlases
+        # fmt:off
+        workflow.connect([
+            (inputnode, ds_parcellated_reho, [("parcellated_reho", "in_file")]),
+            (add_reho_to_src, ds_parcellated_reho, [("metadata", "meta_dict")]),
+        ])
+        # fmt:on
 
     if bandpass_filter:
         ds_alff = pe.Node(
@@ -970,48 +958,47 @@ def init_postproc_derivatives_wf(
             ])
             # fmt:on
 
-        add_alff_to_src = pe.MapNode(
-            niu.Function(
-                function=_make_dictionary,
-                input_names=["metadata", "Sources"],
-                output_names=["metadata"],
-            ),
-            run_without_submitting=True,
-            mem_gb=1,
-            name="add_alff_to_src",
-            iterfield=["metadata"],
-        )
-        # fmt:off
-        workflow.connect([
-            (make_atlas_dict, add_alff_to_src, [("metadata", "metadata")]),
-            (ds_alff, add_alff_to_src, [
-                (("out_file", _make_xcpd_uri, output_dir), "Sources"),
-            ]),
-        ])
-        # fmt:on
+        if atlases:
+            add_alff_to_src = pe.MapNode(
+                niu.Function(
+                    function=_make_dictionary,
+                    input_names=["metadata", "Sources"],
+                    output_names=["metadata"],
+                ),
+                run_without_submitting=True,
+                mem_gb=1,
+                name="add_alff_to_src",
+                iterfield=["metadata"],
+            )
+            # fmt:off
+            workflow.connect([
+                (make_atlas_dict, add_alff_to_src, [("metadata", "metadata")]),
+                (ds_alff, add_alff_to_src, [
+                    (("out_file", _make_xcpd_uri, output_dir), "Sources"),
+                ]),
+            ])
+            # fmt:on
 
-        ds_parcellated_alff = pe.MapNode(
-            DerivativesDataSink(
-                base_directory=output_dir,
-                source_file=name_source,
-                dismiss_entities=["desc"],
-                cohort=cohort,
-                suffix="alff",
-                extension=".tsv",
-            ),
-            name="ds_parcellated_alff",
-            run_without_submitting=True,
-            mem_gb=1,
-            iterfield=["atlas", "in_file", "meta_dict"],
-        )
-        # fmt:off
-        workflow.connect([
-            (inputnode, ds_parcellated_alff, [
-                ("parcellated_alff", "in_file"),
-                ("atlas_names", "atlas"),
-            ]),
-            (add_alff_to_src, ds_parcellated_alff, [("metadata", "meta_dict")]),
-        ])
-        # fmt:on
+            ds_parcellated_alff = pe.MapNode(
+                DerivativesDataSink(
+                    base_directory=output_dir,
+                    source_file=name_source,
+                    dismiss_entities=["desc"],
+                    cohort=cohort,
+                    suffix="alff",
+                    extension=".tsv",
+                ),
+                name="ds_parcellated_alff",
+                run_without_submitting=True,
+                mem_gb=1,
+                iterfield=["atlas", "in_file", "meta_dict"],
+            )
+            ds_parcellated_alff.inputs.atlas = atlases
+            # fmt:off
+            workflow.connect([
+                (inputnode, ds_parcellated_alff, [("parcellated_alff", "in_file")]),
+                (add_alff_to_src, ds_parcellated_alff, [("metadata", "meta_dict")]),
+            ])
+            # fmt:on
 
     return workflow