-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathmodel.py
executable file
·315 lines (269 loc) · 12.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#!/usr/bin/env python3
# Copyright 2023-2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import importlib
import json
import os
try:
import torch
except ModuleNotFoundError as error:
raise RuntimeError("Missing/Incomplete PyTorch package installation") from error
import triton_python_backend_utils as pb_utils
def _get_model_path(config):
# FIXME: Add support for torch.export IR models (.pt2)
filenames = ["model.py", "model.pt"]
if config["default_model_filename"]:
filenames.insert(0, config["default_model_filename"])
for filename in filenames:
model_path = os.path.join(pb_utils.get_model_dir(), filename)
if os.path.exists(model_path):
return model_path
raise pb_utils.TritonModelException(
"No model found in " + pb_utils.get_model_dir() + "/" + str(filenames)
)
def _get_model_data_path(model_path):
data_path_extensions = [".pt"]
model_path_no_extension = model_path[: -(len(model_path.split(".")[-1]) + 1)]
for extension in data_path_extensions:
data_path = model_path_no_extension + extension
if os.path.exists(data_path):
return data_path
# data file not provided
return ""
def _is_py_class_model(model_path):
return model_path[-3:] == ".py"
def _import_module_from_path(module_name, file_path):
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
return module
def _get_model_class_from_module(module):
names = dir(module)
for name in names:
attr = getattr(module, name)
try:
if issubclass(attr, torch.nn.Module):
return attr
except TypeError:
# attr may not be a class
pass
raise pb_utils.TritonModelException("Cannot find a subclass of torch.nn.Module")
def _parse_io_config(io_config):
io = []
for conf in io_config:
io.append({"name": conf["name"]})
return io
def _get_device_name(kind, device_id):
if kind == "GPU":
return "cuda:" + device_id
if kind == "CPU":
return "cpu"
# unspecified device
return ""
def _get_device(kind, device_id, model):
device_name = _get_device_name(kind, device_id)
if device_name == "":
for param in model.parameters():
return param.device
raise pb_utils.TritonModelException("Cannot determine model device")
return torch.device(device_name)
def _set_torch_parallelism(config):
log_msg = ""
parallelism_settings = ["NUM_THREADS", "NUM_INTEROP_THREADS"]
for setting in parallelism_settings:
val = "1"
if setting in config["parameters"]:
val = config["parameters"][setting]["string_value"]
getattr(torch, "set_" + setting.lower())(int(val))
log_msg += setting + " = " + val + "; "
return log_msg
def _get_torch_compile_params(config):
params = {}
if "TORCH_COMPILE_OPTIONAL_PARAMETERS" in config["parameters"]:
val = config["parameters"]["TORCH_COMPILE_OPTIONAL_PARAMETERS"]["string_value"]
params = json.loads(val)
if "model" in params:
raise pb_utils.TritonModelException(
"'model' is not an optional parameter for 'torch.compile'"
)
return params
def _gather_torch_tensors(scatter_tensors):
gather_tensors = []
sections = []
for i in range(len(scatter_tensors)):
tensors = scatter_tensors[i]
for j in range(len(tensors)):
tensor = tensors[j]
if j < len(gather_tensors):
# add to existing tensor
gather_tensors[j] = torch.cat((gather_tensors[j], tensor), 0)
else:
# start a new tensor
gather_tensors.append(tensor)
# record section
section_length = tensors[0].size()[0]
sections.append(section_length)
return gather_tensors, sections
def _scatter_torch_tensors(gather_tensors, sections):
scatter_tensors = []
for j in range(len(gather_tensors)):
scatter_tensor = torch.split(gather_tensors[j], sections)
for i in range(len(scatter_tensor)):
tensor = scatter_tensor[i]
if i < len(scatter_tensors):
# add to existing response
scatter_tensors[i].append(tensor)
else:
# start a new response
scatter_tensors.append([tensor])
return scatter_tensors
class TritonPythonModel:
"""Your Python model must use the same class name. Every Python model
that is created must have "TritonPythonModel" as the class name.
"""
def initialize(self, args):
"""`initialize` is called only once when the model is being loaded.
Implementing `initialize` function is optional. This function allows
the model to initialize any state associated with this model.
Parameters
----------
args : dict
Both keys and values are strings. The dictionary keys and values are:
* model_config: A JSON string containing the model configuration
* model_instance_kind: A string containing model instance kind
* model_instance_device_id: A string containing model instance device ID
* model_repository: Model repository path
* model_version: Model version
* model_name: Model name
"""
self._model_name = args["model_name"]
for_model = "for '" + self._model_name + "'"
self._logger = pb_utils.Logger
self._logger.log_info("Initializing model instance " + for_model)
self._model_config = json.loads(args["model_config"])
self._kind = args["model_instance_kind"]
self._device_id = args["model_instance_device_id"]
self._support_batching = self._model_config["max_batch_size"] > 0
self._inputs = _parse_io_config(self._model_config["input"])
self._outputs = _parse_io_config(self._model_config["output"])
setting_msg = _set_torch_parallelism(self._model_config)
self._logger.log_verbose(
"Torch parallelism settings " + for_model + ": " + setting_msg
)
self._infer_mode = torch.inference_mode(mode=True)
self._infer_mode.__enter__()
params = _get_torch_compile_params(self._model_config)
self._logger.log_verbose(
"'torch.compile' optional parameter(s) " + for_model + ": " + str(params)
)
if self._support_batching:
self._gather = torch.compile(_gather_torch_tensors, **params)
self._scatter = torch.compile(_scatter_torch_tensors, **params)
model_path = _get_model_path(self._model_config)
if not _is_py_class_model(model_path):
self._logger.log_info("Loading '" + self._model_name + "' as TorchScript")
self._model = torch.jit.load(model_path)
self._device = _get_device(self._kind, self._device_id, self._model)
self._model.to(self._device)
self._model.eval()
return
self._model_module = _import_module_from_path(self._model_name, model_path)
self._model_class = _get_model_class_from_module(self._model_module)
self._raw_model = self._model_class()
self._device = _get_device(self._kind, self._device_id, self._raw_model)
data_path = _get_model_data_path(model_path)
if data_path != "":
self._raw_model.load_state_dict(
torch.load(data_path, map_location=self._device)
)
else:
self._logger.log_info("Model parameter file not found " + for_model)
self._raw_model.to(self._device)
self._raw_model.eval()
self._model = torch.compile(self._raw_model, **params)
def execute(self, requests):
"""`execute` MUST be implemented in every Python model. `execute`
function receives a list of pb_utils.InferenceRequest as the only
argument. This function is called when an inference request is made
for this model. Depending on the batching configuration (e.g. Dynamic
Batching) used, `requests` may contain multiple requests. Every
Python model, must create one pb_utils.InferenceResponse for every
pb_utils.InferenceRequest in `requests`. If there is an error, you can
set the error argument when creating a pb_utils.InferenceResponse
Parameters
----------
requests : list
A list of pb_utils.InferenceRequest
Returns
-------
list
A list of pb_utils.InferenceResponse. The length of this list must
be the same as `requests`
"""
responses = []
requests_tensors = []
for request in requests:
tensors = []
for io in self._inputs:
tensor = pb_utils.get_input_tensor_by_name(
request, io["name"]
).to_dlpack()
tensor = torch.from_dlpack(tensor).to(self._device)
tensors.append(tensor)
requests_tensors.append(tensors)
sections = None
if self._support_batching:
requests_tensors, sections = self._gather(requests_tensors)
requests_tensors = [requests_tensors]
responses_tensors = []
for input_tensors in requests_tensors:
output_tensors = self._model(*input_tensors)
if not isinstance(output_tensors, tuple) and not isinstance(
output_tensors, list
):
output_tensors = [output_tensors]
responses_tensors.append(output_tensors)
if self._support_batching:
responses_tensors = self._scatter(responses_tensors[0], sections)
for response_tensors in responses_tensors:
output_tensors = []
for i in range(len(self._outputs)):
io = self._outputs[i]
tensor = response_tensors[i].detach()
tensor = pb_utils.Tensor.from_dlpack(io["name"], tensor)
output_tensors.append(tensor)
inference_response = pb_utils.InferenceResponse(
output_tensors=output_tensors
)
responses.append(inference_response)
return responses
def finalize(self):
"""`finalize` is called only once when the model is being unloaded.
Implementing `finalize` function is OPTIONAL. This function allows
the model to perform any necessary clean ups before exit.
"""
self._logger.log_info("Removing model instance for '" + self._model_name + "'")
self._infer_mode.__exit__(exc_type=None, exc_value=None, traceback=None)