forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolov4-tiny.py
182 lines (149 loc) · 6.28 KB
/
yolov4-tiny.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import sys
import time
import numpy as np
import cv2
import ailia
# import original modules
sys.path.append('../../util')
from utils import get_base_parser, update_parser # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from detector_utils import plot_results, load_image, letterbox_convert, reverse_letterbox # noqa: E402
import webcamera_utils # noqa: E402
from yolov4_tiny_utils import post_processing # noqa: E402
# ======================
# Parameters
# ======================
DETECTION_SIZE_LISTS = [416, 640, 1280]
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/yolov4-tiny/'
IMAGE_PATH = 'dog.jpg'
SAVE_IMAGE_PATH = 'output.png'
COCO_CATEGORY = [
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train",
"truck", "boat", "traffic light", "fire hydrant", "stop sign",
"parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella",
"handbag", "tie", "suitcase", "frisbee", "skis", "snowboard",
"sports ball", "kite", "baseball bat", "baseball glove", "skateboard",
"surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork",
"knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange",
"broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair",
"couch", "potted plant", "bed", "dining table", "toilet", "tv",
"laptop", "mouse", "remote", "keyboard", "cell phone", "microwave",
"oven", "toaster", "sink", "refrigerator", "book", "clock", "vase",
"scissors", "teddy bear", "hair drier", "toothbrush"
]
THRESHOLD = 0.25
IOU = 0.45
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser('Yolov4-tiny model', IMAGE_PATH, SAVE_IMAGE_PATH)
parser.add_argument(
'-th', '--threshold',
default=THRESHOLD, type=float,
help='The detection threshold for yolo. (default: '+str(THRESHOLD)+')'
)
parser.add_argument(
'-iou', '--iou',
default=IOU, type=float,
help='The detection iou for yolo. (default: '+str(IOU)+')'
)
parser.add_argument(
'-dw', '--detection_width', metavar='DETECTION_WIDTH',
default=DETECTION_SIZE_LISTS[0], choices=DETECTION_SIZE_LISTS, type=int,
help='detection size lists: ' + ' | '.join(map(str,DETECTION_SIZE_LISTS))
)
parser.add_argument(
'-dh', '--detection_height', metavar='DETECTION_HEIGHT',
default=DETECTION_SIZE_LISTS[0], choices=DETECTION_SIZE_LISTS, type=int,
help='detection size lists: ' + ' | '.join(map(str,DETECTION_SIZE_LISTS))
)
args = update_parser(parser)
if args.detection_width != DETECTION_SIZE_LISTS[0] or args.detection_height!=DETECTION_SIZE_LISTS[0]:
WEIGHT_PATH = 'yolov4-tiny_'+str(args.detection_width)+'_'+str(args.detection_height)+'.onnx'
MODEL_PATH = 'yolov4-tiny_'+str(args.detection_width)+'_'+str(args.detection_height)+'.onnx.prototxt'
IMAGE_HEIGHT = args.detection_height
IMAGE_WIDTH = args.detection_width
else:
WEIGHT_PATH = 'yolov4-tiny.onnx'
MODEL_PATH = 'yolov4-tiny.onnx.prototxt'
IMAGE_HEIGHT = args.detection_height
IMAGE_WIDTH = args.detection_width
# ======================
# Main functions
# ======================
def recognize_from_image(detector):
# prepare input data
org_img = load_image(args.input)
print(f'input image shape: {org_img.shape}')
org_img = cv2.cvtColor(org_img, cv2.COLOR_BGRA2BGR)
img = letterbox_convert(org_img, (IMAGE_HEIGHT, IMAGE_WIDTH))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.transpose(img, [2, 0, 1])
img = img.astype(np.float32) / 255
img = np.expand_dims(img, 0)
# inference
print('Start inference...')
if args.benchmark:
print('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
output = detector.predict([img])
end = int(round(time.time() * 1000))
print(f'\tailia processing time {end - start} ms')
else:
output = detector.predict([img])
detect_object = post_processing(img, args.threshold, args.iou, output)
detect_object = reverse_letterbox(detect_object[0], org_img, (IMAGE_HEIGHT,IMAGE_WIDTH))
# plot result
res_img = plot_results(detect_object, org_img, COCO_CATEGORY)
# plot result
cv2.imwrite(args.savepath, res_img)
print('Script finished successfully.')
def recognize_from_video(detector):
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
writer = webcamera_utils.get_writer(args.savepath, f_h, f_w)
else:
writer = None
while (True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
img = letterbox_convert(frame, (IMAGE_HEIGHT, IMAGE_WIDTH))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.transpose(img, [2, 0, 1])
img = img.astype(np.float32) / 255
img = np.expand_dims(img, 0)
output = detector.predict([img])
detect_object = post_processing(
img, args.threshold, args.iou, output
)
detect_object = reverse_letterbox(detect_object[0], frame, (IMAGE_HEIGHT,IMAGE_WIDTH))
res_img = plot_results(detect_object, frame, COCO_CATEGORY)
cv2.imshow('frame', res_img)
# save results
if writer is not None:
writer.write(res_img)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
print('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
# net initialize
detector = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
detector.set_input_shape((1, 3, IMAGE_HEIGHT, IMAGE_WIDTH))
if args.video is not None:
# video mode
recognize_from_video(detector)
else:
# image mode
recognize_from_image(detector)
if __name__ == '__main__':
main()