(Image from https://github.com/PeikeLi/Self-Correction-Human-Parsing/blob/master/demo/demo.jpg)
Shape : (1, 3, 473, 473)
- parsing shape : (1, 20, 119, 119)
- fusion shape : (1, 20, 119, 119)
- edge shape : (1, 2, 119, 119)
CATEGORY = (
'Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat',
'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm',
'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe'
)
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 human_part_segmentation.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 human_part_segmentation.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 human_part_segmentation.py --video VIDEO_PATH
Pytorch
ONNX opset=11