forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblazepalm.py
173 lines (138 loc) · 5.01 KB
/
blazepalm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import sys
import time
import argparse
import cv2
import numpy as np
import ailia
import blazepalm_utils as but
sys.path.append('../../util')
from utils import get_base_parser, update_parser # noqa: E402
from webcamera_utils import adjust_frame_size, get_capture # noqa: E402
from image_utils import load_image # noqa: E402
from model_utils import check_and_download_models # noqa: E402
# ======================
# Parameters 1
# ======================
IMAGE_PATH = 'person_with_hands.jpg'
SAVE_IMAGE_PATH = 'output.png'
IMAGE_HEIGHT = 256
IMAGE_WIDTH = 256
# ======================
# Argument Parser Config
# ======================
parser = get_base_parser(
'BlazePalm, on-device real-time palm detection.', IMAGE_PATH, SAVE_IMAGE_PATH,
)
args = update_parser(parser)
# ======================
# Parameters 2
# ======================
MODEL_NAME = 'blazepalm'
# if args.normal:
WEIGHT_PATH = f'{MODEL_NAME}.onnx'
MODEL_PATH = f'{MODEL_NAME}.onnx.prototxt'
# else:
# WEIGHT_PATH = f'{MODEL_NAME}.opt.onnx'
# MODEL_PATH = f'{MODEL_NAME}.opt.onnx.prototxt'
REMOTE_PATH = f'https://storage.googleapis.com/ailia-models/{MODEL_NAME}/'
# ======================
# Utils
# ======================
def display_result(img, detections, with_keypoints=True):
if detections.ndim == 1:
detections = np.expand_dims(detections, axis=0)
n_keypoints = detections.shape[1] // 2 - 2
for i in range(detections.shape[0]):
ymin = detections[i, 0]
xmin = detections[i, 1]
ymax = detections[i, 2]
xmax = detections[i, 3]
start_point = (int(xmin), int(ymin))
end_point = (int(xmax), int(ymax))
img = cv2.rectangle(img, start_point, end_point, (255, 0, 0), 1)
if with_keypoints:
for k in range(n_keypoints):
kp_x = int(detections[i, 4 + k*2 ])
kp_y = int(detections[i, 4 + k*2 + 1])
cv2.circle(img, (kp_x, kp_y), 2, (0, 0, 255), thickness=2)
return img
# ======================
# Main functions
# ======================
def recognize_from_image():
# prepare input data
src_img = cv2.imread(args.input)
img256, _, scale, pad = but.resize_pad(src_img[:,:,::-1])
input_data = img256.astype('float32') / 255.
input_data = np.expand_dims(np.moveaxis(input_data, -1, 0), 0)
# net initialize
env_id = ailia.get_gpu_environment_id()
print(f'env_id: {env_id}')
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id)
# inference
print('Start inference...')
if args.benchmark:
print('BENCHMARK mode')
for _ in range(5):
start = int(round(time.time() * 1000))
preds = net.predict([input_data])
normalized_detections = but.postprocess(preds)[0]
detections = but.denormalize_detections(normalized_detections, scale, pad)
end = int(round(time.time() * 1000))
print(f'\tailia processing time {end - start} ms')
else:
preds = net.predict([input_data])
normalized_detections = but.postprocess(preds)[0]
detections = but.denormalize_detections(normalized_detections, scale, pad)
# postprocessing
display_result(src_img, detections)
cv2.imwrite(args.savepath, src_img)
print('Script finished successfully.')
def recognize_from_video():
# net initialize
env_id = ailia.get_gpu_environment_id()
print(f'env_id: {env_id}')
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id)
capture = get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
save_h, save_w = webcamera_utils.calc_adjust_fsize(
f_h, f_w, IMAGE_HEIGHT, IMAGE_WIDTH
)
writer = webcamera_utils.get_writer(args.savepath, save_h, save_w)
else:
writer = None
while(True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
img256, _, scale, pad = but.resize_pad(frame[:,:,::-1])
input_data = img256.astype('float32') / 255.
input_data = np.expand_dims(np.moveaxis(input_data, -1, 0), 0)
# inference
preds = net.predict([input_data])
normalized_detections = but.postprocess(preds)[0]
detections = but.denormalize_detections(normalized_detections, scale, pad)
# postprocessing
display_result(frame, detections)
cv2.imshow('frame', frame)
# save results
if writer is not None:
writer.write(frame)
capture.release()
cv2.destroyAllWindows()
print('Script finished successfully.')
pass
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
if args.video is not None:
# video mode
recognize_from_video()
else:
# image mode
recognize_from_image()
if __name__ == '__main__':
main()