forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprnet.py
465 lines (398 loc) · 14.1 KB
/
prnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import os
import sys
import time
import argparse
import numpy as np
import cv2
import scipy.io as sio
from skimage.io import imread, imsave
from skimage.transform import resize
import ailia
# import original modules
sys.path.append('../../util')
from utils import get_base_parser, update_parser # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from image_utils import load_image # noqa: E402
import webcamera_utils # noqa: E402
from prnet_utils.net_utils import * # noqa: E402
from prnet_utils.estimate_pose import estimate_pose # noqa: E402
from prnet_utils.rotate_vertices import frontalize # noqa: E402
from prnet_utils.render_app import get_visibility, get_uv_mask, get_depth_image # noqa: E402
from prnet_utils.write import write_obj_with_colors, write_obj_with_texture # noqa: E402
from prnet_utils.cv_plot import plot_kpt, plot_vertices, plot_pose_box # noqa: E402
from prnet_utils.render import render_texture # noqa: E402
# ======================
# Parameters
# ======================
WEIGHT_PATH = 'prnet.onnx'
MODEL_PATH = 'prnet.onnx.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/prnet/'
IMAGE_PATH = 'image00430-cropped.jpg'
SAVE_FOLDER = 'results'
# INFO used only for texture editing mode
REF_IMAGE_PATH = 'uv-data/trump_cropped.png'
UV_FACE_PATH = 'uv-data/uv_face.png'
UV_FACE_EYES_PATH = 'uv-data/uv_face_eyes.png'
# INFO In the original repository, "resolution of input and output image size"
# can be specified separately (though the both size are fixed 256)
IMAGE_SIZE = 256
# ntri x 3
TRIANGLES = np.loadtxt('uv-data/triangles.txt').astype(np.int32)
UV_COORDS = generate_uv_coords(IMAGE_SIZE)
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser('PR-Net', IMAGE_PATH, SAVE_FOLDER)
# texture editing mode configuration
parser.add_argument(
'-t', '--texture', metavar='MODE', type=int, default=-1,
help='Ways to edit texture. 0 for modifying parts (eyes in this ex.), ' +
'1 for changing whole, -1 for normal recognition mode'
)
parser.add_argument(
'-r', '--refpath', metavar='IMAGE',
default=REF_IMAGE_PATH,
help='The path to the texture reference image. ' +
'This image will be used only for texture editing mode.'
)
# original repository argument
parser.add_argument(
'--is3d', action='store_false',
help='whether to output 3D face(.obj). default save colors.'
)
parser.add_argument(
'--isMat', action='store_true',
help='whether to save vertices,color,triangles as mat for matlab showing'
)
parser.add_argument(
'--isKpt', action='store_true',
help='whether to output key points(.txt)'
)
parser.add_argument(
'--isPose', action='store_true',
help='whether to output estimated pose(.txt)'
)
parser.add_argument(
'--isShow', action='store_true',
help=('whether to show the results with opencv(need opencv) instead of '
'saving them')
)
parser.add_argument(
'--isFront', action='store_true',
help='whether to frontalize vertices(mesh)'
)
parser.add_argument(
'--isDepth', action='store_true',
help='whether to output depth image'
)
parser.add_argument(
'--isTexture', action='store_true',
help='whether to save texture in obj file'
)
parser.add_argument(
'--isMask', action='store_true',
help=('whether to set invisible pixels(due to self-occlusion) in texture '
'as 0')
)
parser.add_argument(
'--texture_size', default=256, type=int,
help='size of texture map, default is 256. need isTexture is True'
)
args = update_parser(parser)
# ======================
# Main functions
# ======================
def recognize_from_image():
# prepare input data
name = os.path.splitext(os.path.basename(args.input))[0]
image = load_image(
args.input,
(IMAGE_SIZE, IMAGE_SIZE),
normalize_type='255',
gen_input_ailia=False
)
# for now, h == w == IMAGE_SIZE (as we resized the input when loading it)
h, w = image.shape[0], image.shape[1]
input_data = image[np.newaxis, :, :, :]
# net initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
net.set_input_shape((1, 256, 256, 3))
# inference
print('Start inference...')
if args.benchmark:
print('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
preds_ailia = net.predict(input_data)
end = int(round(time.time() * 1000))
print(f'\tailia processing time {end - start} ms')
else:
preds_ailia = net.predict(input_data)
# postprocessing
# INFO self.MaxPos
pos = preds_ailia[0] * IMAGE_SIZE * 1.1
if args.is3d or args.isMat or args.isPose:
# 3D vertices
vertices = get_vertices(pos, IMAGE_SIZE)
if args.isFront:
save_vertices = frontalize(vertices)
else:
save_vertices = vertices.copy()
save_vertices[:, 1] = h - 1 - save_vertices[:, 1]
if args.is3d:
# corresponding colors
colors = get_colors(image, vertices)
if args.isTexture:
if args.texture_size != 256:
pos_interpolated = resize(
pos,
(args.texture_size, args.texture_size),
preserve_range=True
)
else:
pos_interpolated = pos.copy()
texture = cv2.remap(
image,
pos_interpolated[:, :, :2].astype(np.float32),
None,
interpolation=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,
borderValue=(0)
)
if args.isMask:
vertices_vis = get_visibility(vertices, TRIANGLES, h, w)
uv_mask = get_uv_mask(
vertices_vis,
TRIANGLES,
UV_COORDS,
h,
w,
IMAGE_SIZE
)
uv_mask = resize(
uv_mask,
(args.texture_size, args.texture_size),
preserve_range=True
)
texture = texture * uv_mask[:, :, np.newaxis]
# save 3d face with texture(can open with meshlab)
write_obj_with_texture(
os.path.join(args.savepath, name + '.obj'),
save_vertices,
TRIANGLES,
texture,
UV_COORDS/IMAGE_SIZE
)
else:
# save 3d face(can open with meshlab)
write_obj_with_colors(
os.path.join(args.savepath, name + '.obj'),
save_vertices,
TRIANGLES,
colors
)
if args.isDepth:
depth_image = get_depth_image(vertices, TRIANGLES, h, w, True)
depth = get_depth_image(vertices, TRIANGLES, h, w)
imsave(os.path.join(args.savepath, name + '_depth.jpg'), depth_image)
sio.savemat(
os.path.join(args.savepath, name + '_depth.mat'),
{'depth': depth}
)
if args.isMat:
sio.savemat(
os.path.join(args.savepath, name + '_mesh.mat'),
{'vertices': vertices, 'colors': colors, 'triangles': TRIANGLES}
)
if args.isKpt:
# get landmarks
kpt = get_landmarks(pos)
np.savetxt(os.path.join(args.savepath, name + '_kpt.txt'), kpt)
if args.isPose:
# estimate pose
camera_matrix, pose = estimate_pose(vertices)
np.savetxt(os.path.join(args.savepath, name + '_pose.txt'), pose)
np.savetxt(
os.path.join(args.savepath, name + '_camera_matrix.txt'),
camera_matrix
)
np.savetxt(os.path.join(args.savepath, name + '_pose.txt'), pose)
image = cv2.cvtColor(image.astype(np.float32), cv2.COLOR_RGB2BGR)
if args.isShow:
if args.isKpt:
cv2.imshow('sparse alignment', plot_kpt(image, kpt))
if args.is3d or args.isMat or args.isPose:
cv2.imshow('dense alignment', plot_vertices(image, vertices))
if args.isPose:
cv2.imshow('pose', plot_pose_box(image, camera_matrix, kpt))
cv2.waitKey(0)
else:
image = np.clip((image * 255), 0, 255)
if args.isKpt:
cv2.imwrite(
os.path.join(args.savepath, 'sparse_alignment.png'),
plot_kpt(image, kpt).astype(np.uint8)
)
if args.is3d or args.isMat or args.isPose:
cv2.imwrite(
os.path.join(args.savepath, 'dense_alignment.png'),
plot_vertices(image, vertices).astype(np.uint8)
)
if args.isPose:
cv2.imwrite(
os.path.join(args.savepath, 'pose.png'),
plot_pose_box(image, camera_matrix, kpt).astype(np.uint8)
)
print('Script finished successfully.')
def texture_editing_from_images():
image = load_image(
args.input,
(IMAGE_SIZE, IMAGE_SIZE),
normalize_type='255',
gen_input_ailia=False
)
# for now, h == w == IMAGE_SIZE (as we resized the input when loading it)
h, w = image.shape[0], image.shape[1]
input_data = image[np.newaxis, :, :, :]
# net initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
net.set_input_shape((1, 256, 256, 3))
# inference
# 1. 3d reconstruction --> get texture
pos = net.predict(input_data)[0] * IMAGE_SIZE * 1.1
vertices = get_vertices(pos, IMAGE_SIZE)
texture = cv2.remap(
image,
pos[:, :, :2].astype(np.float32),
None,
interpolation=cv2.INTER_NEAREST,
borderMode=cv2.BORDER_CONSTANT,
borderValue=(0)
)
# 2. texture editing
MODE = args.texture
ref_image = load_image(
args.refpath,
(IMAGE_SIZE, IMAGE_SIZE),
normalize_type='255',
gen_input_ailia=False
)
input_data = ref_image[np.newaxis, :, :, :]
ref_pos = net.predict(input_data)[0] * IMAGE_SIZE * 1.1
# texture from another image or a processed texture
ref_texture = cv2.remap(
ref_image,
ref_pos[:, :, :2].astype(np.float32),
None,
interpolation=cv2.INTER_NEAREST,
borderMode=cv2.BORDER_CONSTANT,
borderValue=(0)
)
# change part of texture (here, modify eyes as example)
if MODE == 0:
# load eye mask
uv_face_eye = imread(UV_FACE_EYES_PATH, as_grey=True) / 255.
uv_face = imread(UV_FACE_PATH, as_grey=True) / 255.
eye_mask = (abs(uv_face_eye - uv_face) > 0).astype(np.float32)
# modify texture
new_texture = texture * \
(1 - eye_mask[:, :, np.newaxis]) + \
ref_texture*eye_mask[:, :, np.newaxis]
# change whole face(face swap)
elif MODE == 1:
ref_vertices = get_vertices(ref_pos, IMAGE_SIZE)
new_texture = ref_texture # (texture + ref_texture)/2.
else:
print('Wrong Mode! Mode should be 0 or 1.')
exit()
# 3. remap to input image (render).
vis_colors = np.ones((vertices.shape[0], 1))
face_mask = render_texture(
vertices.T, vis_colors.T, TRIANGLES.T, h, w, c=1
)
face_mask = np.squeeze(face_mask > 0).astype(np.float32)
new_colors = get_colors_from_texture(new_texture, IMAGE_SIZE)
new_image = render_texture(
vertices.T, new_colors.T, TRIANGLES.T, h, w, c=3
)
new_image = image * (1 - face_mask[:, :, np.newaxis]) + \
new_image * face_mask[:, :, np.newaxis]
# Possion Editing for blending image
vis_ind = np.argwhere(face_mask > 0)
vis_min = np.min(vis_ind, 0)
vis_max = np.max(vis_ind, 0)
center = (
int((vis_min[1] + vis_max[1])/2+0.5),
int((vis_min[0] + vis_max[0])/2+0.5)
)
output = cv2.seamlessClone(
(new_image*255).astype(np.uint8),
(image*255).astype(np.uint8),
(face_mask*255).astype(np.uint8),
center,
cv2.NORMAL_CLONE
)
# save output
imsave(os.path.join(args.savepath, 'texture_edited.png'), output)
print('Script finished successfully.')
def recognize_from_video():
raise NotImplementedError
"""
# net initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
capture = get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
save_h, save_w = webcamera_utils.calc_adjust_fsize(
f_h, f_w, ailia_input_h, ailia_input_w
)
writer = webcamera_utils.get_writer(args.savepath, save_h, save_w)
else:
writer = None
while(True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
input_image, input_data = webcamera_utils.preprocess_frame(
frame, IMAGE_SIZE, IMAGE_SIZE, normalize_type='127.5'
)
# ???
# inference
# 1.
preds_ailia = net.predict(input_data)
# 2.
input_blobs = net.get_input_blob_list()
net.set_input_blob_data(input_data, input_blobs[0])
net.update()
preds_ailia = net.get_results()
# postprocessing
# ???
cv2.imshow('frame', input_image)
# save results
if writer is not None:
writer.write(seg_image)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
print('Script finished successfully.')
"""
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
# make saved data directory
print(f'Make ./{args.savepath} directory if it does not exist')
os.makedirs(args.savepath, exist_ok=True)
if args.video is not None:
# video mode
recognize_from_video()
else:
# image mode
if args.texture == -1:
recognize_from_image()
else:
texture_editing_from_images()
if __name__ == '__main__':
main()