-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutil.py
108 lines (87 loc) · 4.51 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import tensorflow as tf
from configs import DEFINES
import os, shutil, glob
from collections import OrderedDict
def get_params():
params = {
'batch_size': DEFINES.batch_size,
'hidden_dim': DEFINES.hidden_dim,
'vocab_size': DEFINES.vocab_size,
'n_label' : DEFINES.n_label,
'emb_dim': DEFINES.emb_dim,
'learning_rate': DEFINES.learning_rate,
'max_seq_length': DEFINES.max_seq_length,
'filter_size': DEFINES.filter_size,
'num_filters': DEFINES.num_filters,
'dropout_rate': DEFINES.dropout_rate,
'model' : DEFINES.model,
'd_a_size' : DEFINES.d_a_size,
'r_size' : DEFINES.r_size,
'p_coef' : DEFINES.p_coef
}
return params
def check_and_create_path():
data_out_path = os.path.join(os.getcwd(), DEFINES.output_path)
os.makedirs(data_out_path, exist_ok=True)
check_point_path = os.path.join(os.getcwd(),DEFINES.ckpt_path)
os.makedirs(check_point_path, exist_ok=True)
best_check_point_path = os.path.join(os.getcwd(),DEFINES.best_ckpt_path)
os.makedirs(best_check_point_path, exist_ok=True)
class BestCheckpointsExporter(tf.estimator.BestExporter):
def __init__(self, n_best=3):
super().__init__()
self._compare_fn = self._acc_compare_fn
self.n_best = 3
self.best_model = self._init_dict()
def _init_dict(self):
tmp = dict()
for i in range(self.n_best):
tmp[str(i)] = 0.0
return self._sort_dict(tmp)
def _sort_dict(self, dict):
return OrderedDict(sorted(dict.items(), key=lambda k:k[1], reverse=True))
def _acc_compare_list(self, eval_result, checkpoint_path, best_export_path):
new_name = checkpoint_path
new_value = eval_result['accuracy']
for key, value in self.best_model.items():
if new_value > value:
legacy = self.best_model.popitem()[0]
self.best_model[new_name] = new_value
self.best_model = OrderedDict(sorted(self.best_model.items(), key=lambda k:k[1], reverse=True))
self._delete_legacy(best_export_path, legacy)
break
def _delete_legacy(self, best_export_path, legacy):
file_list = glob.glob(best_export_path + legacy + '*')
for f in file_list:
if os.path.isfile(f):
os.remove(f)
def _acc_compare_fn(self, curr_best_eval_result, cand_eval_result):
default_key = "accuracy"
if not curr_best_eval_result or default_key not in curr_best_eval_result:
raise ValueError(
'curr_best_eval_result cannot be empty or no loss is found in it.')
if not cand_eval_result or default_key not in cand_eval_result:
raise ValueError(
'cand_eval_result cannot be empty or no loss is found in it.')
return curr_best_eval_result[default_key] < cand_eval_result[default_key]
def export(self, estimator, export_path, checkpoint_path, eval_result,
is_the_final_export, best_export_path=DEFINES.best_ckpt_path):
if self._best_eval_result is None or \
self._compare_fn(self._best_eval_result, eval_result):
tf.logging.info(
'Exporting a better model ({} instead of {} )...'.format(
eval_result, self._best_eval_result))
# copy the checkpoints files *.meta *.index, *.data* each time there is a better result, no cleanup for max amount of files here
for name in glob.glob(checkpoint_path + '.*'):
shutil.copy(name, os.path.join(best_export_path, os.path.basename(name)))
# also save the text file used by the estimator api to find the best checkpoint
self._acc_compare_list(eval_result, os.path.basename(checkpoint_path), best_export_path)
with open(os.path.join(DEFINES.best_ckpt_path, "checkpoint"), 'w') as f:
f.write("model_checkpoint_path: \"{}\"".format(os.path.basename(checkpoint_path)))
f.write("\n# best " + str(self.n_best) + " model :" + str(list(self.best_model.items())))
print('Best ' + str(self.n_best) + ' model :', list(self.best_model.items()))
self._best_eval_result = eval_result
else:
tf.logging.info(
'Keeping the current best model ({} instead of {}).'.format(
self._best_eval_result, eval_result))