-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathutils.py
69 lines (48 loc) · 1.76 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import ase
from ase import io
from ase import Atoms
import copy
import numpy as np
import torch
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from nglview import show_ase, show_file, show_mdtraj
import mdtraj
matplotlib.rcParams.update({'font.size': 25})
matplotlib.rc('lines', linewidth=4, color='g')
matplotlib.rcParams['axes.linewidth'] = 3.0
def to_mdtraj(system, traj):
traj = [Atoms(positions=xyz, numbers=system.get_atomic_numbers()) for xyz in traj['positions']]
# create tmp file
ase.io.write("junk.pdb", traj)
traj = mdtraj.load_pdb("junk.pdb")
import os
os.remove('junk.pdb')
show_mdtraj(traj)
return traj
def display_traj(system, traj):
from nglview import show_mdtraj
return show_mdtraj(to_mdtraj(system, traj))
def plot_lesp(model, traj=None, res=50, start=[3.5, 0.8], end=[0.8, 3.5], fname=None):
xlist = np.linspace(0.5, 5.0, res)
ylist = np.linspace(0.5, 5.0, res)
X, Y = np.meshgrid(xlist, ylist)
model = copy.deepcopy(model).to("cpu")
data = torch.Tensor(np.concatenate((X[:,:, None],Y[:,:,None]), axis=2).reshape(-1,2))
E = model(data).detach().cpu().numpy().reshape(res, res)
plt.figure(figsize=(7,7))
cp = plt.contourf(X, Y, E, 40, cmap='GnBu', alpha=0.4)
plt.colorbar(cp)
if traj is not None:
traj = traj.detach().cpu().numpy()
colors = cm.rainbow(np.linspace(0, 1, traj.shape[0]))
for i,c in enumerate(colors):
plt.scatter(traj[i, 2], traj[i, 3], color=c, s=1)
plt.scatter(start[0], start[1], c='red')
plt.scatter(end[0], end[1], c='red')
plt.xlim((0.5, 5.0))
plt.ylim((0.5, 5.0))
if fname is not None:
plt.savefig(fname)
plt.show()