-
Notifications
You must be signed in to change notification settings - Fork 1
/
EPGsim_GRE.m
57 lines (48 loc) · 1.55 KB
/
EPGsim_GRE.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
function [om_store,echoes,seq] = EPGsim_GRE(alpha,N,TR,rlx)
%[om_store,echoes,seq] = EPGsim_GRE(alpha,N,TR,rlx)
% EPG simulation of simple GRE
%
% The same RF phase (=0) & flip angle is repeated at each TR
% starting from t = 0
% alpha : flip angle
% N : number of RF pulses
% TR : interval between neighboring RF pulses
% rlx: relaxation mode. Default is no relaxation.
%
% Gehua Tong, Nov 19 2018
if nargin < 4
rlx = 'none';
end
if ischar(rlx)
switch rlx
case 'none'
seq.T1 = 0; seq.T2 = 0;% zero T1,T2 means no relaxation in relax.m
case 'gm' % gray matter
seq.T1 = 1300; seq.T2 = 110;
case 'wm' % white matter
seq.T1 = 960; seq.T2 = 80;
case 'csf'
seq.T1 = 3600; seq.T2 = 1800;
case 'default'
seq.T1 = 1000; seq.T2 = 100; % same as in EPG paper for reference
end
elseif isequal(size(rlx),[1,2])
seq.T1 = rlx(1); seq.T2 = rlx(2);
else
seq.T1 = 0; seq.T2 = 0; % zero T1,T2 means no relaxation in relax.m
end
seq.name = 'Simple gradient-recalled echo';
seq.rf(:,1:N) = repmat([0,alpha]',1,N);
seq.time = [];
rftimes = 0:TR:TR*(N-1);
seq.events = {};
seq.grad = ones(1,N+1);
for n = 1:N
% Order of operators : T(rf)->S(grad)->E(relax) "TSE",easy to remember!
seq.events{end+1} = 'rf';
seq.events{end+1} = 'grad';
seq.events{end+1} = 'relax';
seq.time = [seq.time,rftimes(n),rftimes(n)+TR,rftimes(n)+TR];
end
[om_store,echoes] = EPG_custom(seq);
end