-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathcli_format.html
906 lines (767 loc) · 26.1 KB
/
cli_format.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
<html>
<body>
<head>
<title>
COMMON LAYER INTERFACE (CLI)</title></head>
(source: <a href="https://www.forwiss.uni-passau.de/~welisch/papers/cli_format.html">https://www.forwiss.uni-passau.de/~welisch/papers/cli_format.html</a>)
<h1><p>COMMON LAYER INTERFACE (CLI)</p></h1>
<h3><p>VERSION 2.0
</p></h3>
<hr>
<h2>Introduction
</h2>
<p>The Common Layer Interface (CLI) is a universal format for the input of geometry data to
model fabrication systems based on layer manufacturing technologies (LMT). It is suitable for
systems using layer-wise photo-curing of resin, sintering or binding of powder, cutting of sheet
material, solidification of molten material, and any other systems which build models on a
layer-by-layer basis.
<p>CLI is intended as a simple, efficient and unambiguous format for data input to all LMT-based
systems, based on a "2 1/2D" layer representation. It is independent of vendors or fabrication
machines, and should require only a simple conversion to the vendor-specific internal data
structure of the machine. The obligatory parts of the format are also application independent,
while the USERDATA command allows user- or application-specific data to be defined in the
header. This flexibility allows the format to be used for a wide range of applications, without
loss of important information and without excluding data transfer between different
applications. One specific application, medical scan data, is already accommodated with
appropriate user data. Others can be added as they are defined.
<p>Comments and suggestions for future versions are welcome, and should be forwarded to one
of the contacts named in Appendix A.
<h2><p>1. Definitions and general conventions
</p></h2>
<h3>1.1. 2 1/2D-Representation
</h3>
<p>The geometrical information of the intersection of a 3D-model with a plane is called a
slice. The volume between two parallel slices is called a layer. The 2 1/2D-representation
of a model is the sum total of layer-descriptions. The slicing plane is parallel to the xy-
plane of a right hand cartesian coordinate system. It is assumed that the building
direction is the positive z-axis. </p>
<h3>1.2. Layer
</h3>
<p>A layer is the volume between two parallel slices, and is defined by its thickness, a set
of contours and (optionally) hatches.
</p>
<h3>1.3. Contour
</h3>
<p>Contours represent the boundaries of solid material within a layer, and are defined by
polylines (section 1.4). They are classified as internal and external contours (Fig.1). For
correct interpretation each contour must be closed and must not intersect itself or
another contour.
</p>
<IMG SRC="cli1.gif">
<p><pre> (Fig 1)</pre>
</p>
<h3>1.4. Polyline
</h3>
<p>A polyline is defined by a set of vertex points (x,y), connected contiguously in the listed
order by straight line segments. A closed polyline can also be called a polygon.
</p>
<h3>1.5. Hatches
</h3>
<p>A hatch is a set of independent straight lines, each defined by one start and one end
point (x,y). The purpose of hatches and open polylines is to define support structures
or filling structures to obtain a solid model, which are necessary for some LMT
systems.
<h2><p>2. ASCII Data Format</p></h2>
<h3>2.1. File Structure
</h3>
<p>The ASCII-file is separated into sections. Each section is marked by a start and an end
marker.
Only the characters A...Z, a...z, , ., 0...9, $ and the separators (section 2.4) are
interpreted. All other characters will be ignored.
Each file must have a HEADER-section and a GEOMETRY-section. Other sections
are optional. The start of the HEADER-section will be interpreted as the start of data,
and the end of the GEOMETRY-section as the end of data.
Data may be included before the HEADER-section and after the GEOMETRY-section,
but will be ignored.
</p>
<h3>2.2. General Syntax
</h3>
<p>All commands have the general form:
<dl>
<dd><p>Keyword/parameter
</dl>
<p>Keyword and parameter are separated by the character "/" (oblique stroke). If there are
no parameters there should be no oblique stroke. The only exception to this rule is the
command "//" (see description below).
</p>
<h4>2.2.1. Keywords
</h4>
<p>Keywords are names according to the language description defined below. All
keywords are written in ASCII upper case notation. Every keyword must start with the
sequence "$$".
</p>
<h4>2.2.2. Parameters
</h4>
<p>Parameters are numbers or ASCII-strings separated by the character "," (comma).
</p>
<h3>2.3. Numbers</h4>
<dl><dt><p>INTEGER:</p>
<dd>+/- k1...kn : every ki is a number from 0 to 9.
</dl>
<p>Negative numbers must have a minus sign, positive numbers can have a plus sign.
Numbers with no sign are interpreted as positive. Maximum range is +/- 2^31.
</p>
<dl><dt><p>REAL:</p>
<dd>+/- x1...xn.y1...ym
<dd>n >= 0, m >= 0
<dd>1 <= (n + m) <= realim</dl>
<p>xi,yi are numbers from 0 to 9, respectively before and after the decimal point.
Realim is the maximum number of digits within a REAL and is limited to 16.
A decimal point is required for all REAL numbers.
</p>
<h3>2.4. Separators
</h3>
<p>Separators are "/" (oblique stroke), "," (comma) and "//" (double stroke).
</p>
<h3>2.5. ASCII-strings
</h3>
<p>An ASCII-string is any number of valid characters enclosed within double-quotes.
Valid characters are all printable characters except the double-quotes.</p>
<h2>3. ASCII Language Description
</h2>
<h3><p>3.1. Non geometric commands</p>
</h3>
<h4>3.1.1. Comments
</h4>
<p>Command : remark
<br>
Syntax : // text //<br>
<p>This is an exception to the general syntax. The text between the // commands will be
interpreted as a comment. Within the comment the double stroke is not allowed.
</p>
<h4>3.1.2. Structure </h4>
<p>Command : start header<br>
Syntax : $$HEADERSTART
<br>
<p>This command starts the HEADER-section, and will be interpreted as the start of data.
<br>
___________
<p>Command : end header
<br>
Syntax : $$HEADEREND
<br>
This command ends the HEADER-section.<br>
___________
<p>Command : start geometry
<br>
Syntax : $$GEOMETRYSTART
<br>
This command starts the GEOMETRY-section
<br>
___________
<p>Command : end geometry (and end data)
<br>
Syntax : $$GEOMETRYEND<br>
This command ends the GEOMETRY-section, and will be interpreted as the end of
data.<br>
___________
</p>
<h4>3.1.3. HEADER-Information
</h4>
<p>Command : data format is binary
<br>
Syntax : $$BINARY
<br>
Indicates the data in the GEOMETRY-section to be binary.
<br>
__________
<p>Command : data format is ASCII
<br>
Syntax : $$ASCII
<br>
Indicates the data in the GEOMETRY-section to be ASCII.
<br>
___________
<p>Command : units are u [mm]
<br>
Syntax : $$UNITS/u
<br>
Parameter u : REAL
<br>
u indicates the units of the coordinates in mm. <br>
__________
<p>Command : version is v
<br>
Syntax : $$VERSION/v
<br>
Parameter v : integer
<br>
v divided by 100 gives the version number.
<br>
For example 200 --> Version 2.00<br>
__________
<p>All following HEADER-commands are optional.
<p>Command : file was built on date
<br>
Syntax : $$DATE/d
<br>
Parameter d : integer
<br>
d will be interpreted in the sequence DDMMYY. <br>
___________
<p>Command : dimension
<br>
Syntax : $$DIMENSION/x1,y1,z1,x2,y2,z2
<br>
Parameters:
<br>
x1, y1, z1, x2, y2, z2 : REAL
<br>
<p>Describes the dimensions of the outline box which completely contains the part in
absolute coordinates (in mm) with respect to the origin. The conditions x1 < x2 , y1 <
y2 and z1 < z2 must be satisfied.
<br>
___________
<p>Command : number of layers inside the file is i
<br>
Syntax : $$LAYERS/i
<br>
Parameter i : INTEGER
<br>
The Parameter i indicates the number of layers inside the file.
<br>
___________
<p>Command : align data in GEOMETRY-section to 32 bit
(for binary GEOMETRY-section only)
<br>
Syntax : $$ALIGN
<br>
<p>Sets the alignment of geometry-data to 32 bit. The command only takes effect in case
of a binary GEOMETRY-section. The GEOMETRY-section must start at the
beginning of a 32-bit-word. The HEADER-section must end at the end of a 32-bit-
word. Every data item within the GEOMETRY-section must start at the beginning of a
32-bit-word. A pair of coordinates (x,y) is seen as one data item. For the commands
start polyline short and start hatches short a pair of coordinates (x,y) are to be written
into one 32-bit-word.
</p>
<p>Example:
<br>
($$ALIGN in HEADER-section)
</p>
<pre>
Byte 1 2 3 4 5 6 7 8 9........
127 # # # 4 1 # # 129....
___________
</pre>
<p>Command : set a label for a part
<br>
Syntax : $$LABEL/id,text
<br></p>
<dl>
<dt>Parameter
<dd>id : INTEGER
<dd>text : ASCII-string
</dl>
<p>id: Identifier to allow more than one model information in one file. For every id used in
the commands start polyline (short/long/ASCII) and start hatches
(short/long/ASCII) there shall be one command $$LABEL. Each id causes the
building-process to build a different part.
<p>text: An ASCII string that gives some comment on the part.
<br>
___________
<p>Command : put user-specific data to the header
<br>
Syntax : $$USERDATA/uid,len,user-data
<br>
Parameters:
<br><dl>
<dd>uid : ASCII-string
<dd>len : long integer
<dd>user-data: field of data (binary or ASCII); length is len bytes
</dl></p>
<p>uid: user identifier - identifies user and the following user-data.
uid and user-data shall be cleared and published by a central coordinator (e.g.
task coordinator).
<p>Example: $$USERDATA/"CompanyZZ9401",....
<br>
len: defines the length of user-data in bytes from the byte after the comma after the
parameter len to the byte before the following $$command.
user-data: field of user-specific data; the length of this field is defined by the parameter
len; the contents of this field is defined by the user himself.
<br>
___________
</p>
<h3>3.2. Geometric Commands
</h3>
<p>Command : start layer
<br>
Syntax : $$LAYER/z
<br>
Parameter z : REAL
<br>
Start of a layer with upper surface at height z (z*units [mm]). All layers must be sorted
in ascending order with respect to z. The thickness of the layer is given by the
difference between the z values of the current and previous layers. A thickness for the
first (lowest) layer can be specified by including a "zero-layer" with a given z value but
with no polyline.
<br>
___________
<p>Command : start polyline
<br>
Syntax : $$POLYLINE/id,dir,n,p1x,p1y,...pnx,pny
<br>
Parameters:
<br><pre>
id : INTEGER
dir,n : INTEGER
p1x..pny : REAL
</pre><br>
id : identifier to allow more than one model information in one file.
<br>
id refers to the parameter id of command $$LABEL (HEADER-section).<br>
dir : Orientation of the line when viewing in the negative z-direction
<br>
0 : clockwise (internal)
<br>
1 : counter-clockwise (external)<br>
2 : open line (no solid)
<br>
n : number of points
<br>
p1x..pny : coordinates of the points 1..n
<p>Polylines representing internal contours must be clockwise, polylines representing
external contours counter-clockwise (Fig 2). This orientation must be valid for the
parameter "dir" and for the order the points are listed. The value of "dir " overwrites
the order of listed points if there is a mismatch.
<p>In the case of closed polylines (dir = 0,1) p1x = pnx and p1y = pny must be valid.
The open line value for the dir flag can be used to indicate a non-closed polyline. This
can be used as an input for correction and editing tools based on the CLI format. </p>
<img src="cli2.gif">
<p><pre> Fig 2</pre>
<br>
___________
<p>Command : start hatches
<br>
Syntax : $$HATCHES/id,n,p1sx,p1sy,p1ex,p1ey,...pnex,pney
<br>
Parameters:
<br><pre>
id : INTEGER
n : INTEGER
p1sx..pney : REAL
</pre>
<p>id : identifier to allow more than one model information in one file.
<br>
id refers to the parameter id of command $$LABEL (HEADER-section).
<br>
n : number of hatches (n*4 =number of coordinates)
<br>
p1sx..pney : coordinates of the hatches 1..n
<br>
4 parameters for every hatch (startx,starty,endx,endy)
<br>
___________
</p>
<h2>4. ASCII-Data-File-Example
</h2>
<p><pre>$$HEADERSTART
// This is a example for the use of the Layer Format //
$$ASCII
$$UNITS/1 // all coordinates are given in mm //
// $$UNITS/0.01 all coordinates are given in units 0.01 mm //
$$DATE/070493 // 7. April 1993 //
$$LAYERS/100 // 100 layers //
$$HEADEREND
$$GEOMETRYSTART // start of GEOMETRY-section//
$$LAYER/5.5 // Layer at height z = 5.5 mm//
$$POLYLINE/0,0,5,1.00,2.02,3.30,3.42,5.23,5.01,1.57,5.6,1.00,2.02
$$HATCHES/0,2,10.2,10.4,12.34,12.5,8.8,9.3,15.7,13.2
$$POLYLINE/0,1,10,1.2,4.01,...........
..
..
$$LAYER/5.6
$$POLYLINE/0,0,200,10.23,12.34,..........................
..........
..
..
$$LAYER/15.5
$$POLYLINE/0,0,200,13.23,12.34,..........................
..........
..
..
$$GEOMETRYEND
</pre>
<h2>5. Binary Data Format
</h2>
<h3><p>5.1. File structure
</h3>
<p>The binary-data-file is separated into two sections : a header-section in ASCII data
format and a geometry-section in binary data format. For header-section commands see
section 3.1.3.
<p>The start of the header-section will be interpreted as start of data.
<br>
The end of the geometry-section will be interpreted as the end of data.<br>
The end of the header-section must be indicated by a $$HEADEREND command.
<br>
The geometry-section must directly follow the header-section (directly after the
command $$HEADEREND) without any kind of information (carriage return, line
feed etc.) in between.
</p>
<h3>5.2. General Binary Syntax</h3>
<p>All commands have the following general form:
<br>
CommandIndex,p1,p2,...pn
<br>
There is no separator between Command Index and parameters, nor within the
parameter-section.</p>
<h4>5.2.1. Command Index (CI)
</h4>
<p>Command Index is a number (unsigned integer) indicating the command according to
the command list below.
</p>
<h4>5.2.2. Parameters
</h4>
<p>The parameters p1.. pn are numbers according the specification below. </p>
<h3>5.3. Numbers
</h3>
<p>Numbers are specified using the IEEE standard.
<br><br>
<pre>
Data Formats Range Precision Representation
----------------------------------------------------------------------------
Unsigned 10^4 16 Bits [15...0] (Two's Complement)
Integer
Long 10^(+/- 9) 32 Bits [31...0] (Two's Complement)
Integer
Real 10^(+/- 38) 24 Bits [31|30..23|22..0]
s e f
s: sign bit
e: Biased Exponent
f: Significand
Fig. 3</pre><pre>
if 0 < e < 255 then v = (-1)^s * 2^(e-127) * (1.f)
if e=0 and f<>0 then v = (-1)^s * 2^(-126) * (0.f)
if e=0 and f=0 then v = (-1)^s * 0
Where e is the Biased Exponent,
s is the sign bit,
f is the significand, and
v the value.
unsigned INTEGER : 2 Bytes
range 0..65535
precision 16 Bits
long INTEGER : 4 Bytes
range 0..+/- 231
precision 32 Bits
REAL: 4 Bytes
range 10 +/- 38
precision 24 Bits
most significant Byte = highest addressed Byte.
</pre></p>
<h2>6. Binary Language Description
</h2>
<p><h3>6.1. Non-geometric commands</h3>
<p>No non-geometric commands are specified in version 2.0.
</p>
<h3>6.2. Geometric Commands
</h3>
<pre>
Command : Start Layer long
CI,z
CI 127
Parameter z : REAL
</pre>
<p>Start of a layer with upper surface at height z (z*units [mm]). All layers must be sorted
in ascending order with respect to z. The thickness of the layer is given by the
difference between the z values of the current and previous layers. A thickness for the
first (lowest) layer can be specified by including a "zero-layer" with a given z value but
no polyline.<br>
___________
<br><br>
Command : Start Layer short
<br>
CI,z
<br>
CI 128
<br>
Parameter z : unsigned INTEGER
<br>
Start of a layer with upper surface at height z (z*units [mm]). All layers must be sorted
in ascending order with respect to z.
<br>
___________
<br><br>
Command : Start PolyLine shortCommand : Start PolyLine <br>
CI,id,dir,n,p1x,p1y,...pnx,pny
<br><pre>
CI 129
Parameters:
id : unsigned INTEGER
dir,n : unsigned INTEGER
p1x..pny : unsigned INTEGER
</pre><br>
id : identifier to allow more than one model information in one file.
<br>
id refers to the parameter id of command $$LABEL (HEADER-section).
<br>
dir : orientation of the line when viewing in the negative z-direction
<br><dl>
<dd>0 : clockwise
<dd>1 : counter clockwise
<dd>2 : open line
</dl><br>
n : number of points
<br>
p1x..pny : coordinates of the points 1..n
<br>
See also section 3.2 command $$POLYLINE and section 3.1.3 command $$ALIGN
<br>
and $$ LABEL
<br>
___________
<br><br>
Command : Start PolyLine long
<br>
CI,id,dir,n,p1x,p1y,...pnx,pny
<br><pre>
CI 130
Parameters:
id : long INTEGER
dir,n : long INTEGER
p1x..pny : REAL
</pre><br>
id : identifier to allow more than one model information in one file.
<br>
id refers to the parameter id of command $$LABEL (HEADER-section).
<br>
dir : orientation of the line when viewing in the negative z-direction
<br><dl>
<dd>0 : clockwise
<dd>1 : counter clockwise
<dd>2 : open line
<dl><br>
n : number of points
<br>
p1x..pny : coordinates of the points 1..n
<br>
See also section 3.2 command $$POLYLINE and section 3.1.3 command $$ALIGN <br>
and $$ LABEL.
<br>
___________
<br><br>
Command : Start Hatches short
<br>
CI,id,n,p1sx,p1sy,...pnex,pney
<br><pre>
CI 131
Parameters:
id : unsigned INTEGER
n : unsigned INTEGER
p1sx..pney : unsigned INTEGER
</pre><br>
id : identifier to allow more than one model information in one file.
<br>
id refers to the parameter id of command $$LABEL (HEADER-section).
<br>
n : number of hatches (n*4 = number of coordinates)
<br>
p1sx..pney : coordinates of the hatches 1..n
<br>
See also section 3.2 command $$POLYLINE and section 3.1.3 command $$ALIGN <br>
and $$ LABEL
<br>
___________
<br>
<br>
Command : Start Hatches longCommand : Start PolyLine
<br>
CI,id,n,p1sx,p1sy,...pnex,pney
<br><pre>
CI 132
Parameters:
id : long INTEGER
n : long INTEGER
p1sx..pney : REAL
</pre><br>
id : identifier to allow more than one model information in one file.
<br>
id refers to the parameter id of command $$LABEL (HEADER-section).
<br>
n : number of hatches (n*4 = number of coordinates)
<br>
p1sx..pney : coordinates of the hatches 1..n
<br>
See also section 3.2 command $$POLYLINE and section 3.1.3 command $$ALIGN
<br>
and $$ LABEL
<br>
__________
</p>
<h2>Appendix A - Development of the Common Layer Interface (CLI)
</h2>
<p>Development of the Common Layer Interface (CLI) originated in the Brite-EuRam Project
"Rapid Prototyping Techniques", whose work programme identified the following need:
<p>"Problems with the current STL interface (triangle model) force us to look for a
new data format for general LMT-processes, which may only contain cross
section information... The section oriented information should be vendor
independent."
<p>Simultaneously, the Brite-EuRam Project "Phidias" was working to establish and make
available an interface between medical scan data and layer manufacturing technologies.
Cooperation between these two projects, together with comments and contributions from third
parties, led to the development of CLI version 2.0.
<p>Further development and dissemination of the CLI is also continuing in cooperation with
EARP (the European Action on Rapid Prototyping), an organization of companies and
institutions throughout Europe which are actively working with rapid prototyping. The up-to-
date version of CLI is (from September 1994) continuously available to Internet users under
the World Wide Web, at the address given on the next page. This also provides a forum for
Internet users to discuss their use of CLI and make suggestions.
<p>Alternatively, copies of the CLI specification can be obtained from the Brite EuRam project
contacts listed.</p>
<h3>CLI Development Group
</h3>
<p<Brite EuRam project BE 5278 "RPT - Development and Integration of Rapid Prototyping
Techniques for the Automotive Industry". Partners:
<br>
BIBA, Germany
<br>
BMW AG, Germany
<br>
Centro Recherche FIAT, Italy
<br>
CRIF, Belgium
<br>
EOS GmbH, Germany
<br>
IKP, Germany
<br>
Mercedes Benz AG, Germany
<p>Brite EuRam project BE 5930 "Phidias - Laser Photopolymerisation Models based on Medical
Imaging: a Development Improving the Accuracy of Surgery". Partners:
<br>
Katholieke Universiteit Leuven, Belgium
<br>
Materialise NV, Belgium
<br>
Siemens Medical Engineering Group, Germany
<br>
Zeneca Ltd, United Kingdom
/p>
<h3>Contacts
</h3>
<p>Internet addresses for the CLI specification, the EARP electronic book and other information
on rapid prototyping (on the World Wide Web hypertext multi-media system):
<p>http://www.cs.hut.fi~ado/rp/rp.html (Mr Andre Dolenc, Helsinki University)
<br>
http://www.cranfield.ac.uk (Mr Ron. Jamieson, Cranfield University)
<p>Brite EuRam RPT project:
<p>Dr M. Shellabear Tel: +49 (89) 899131-0
<br>
EOS GmbH Fax: +49 (89) 8598402
<br>
Pasinger Str. 2
<br>
D-82152 Planegg
<br>
Germany
<p>Brite EuRam PHIDIAS project:
<p>Prof W. Kalender Tel: +49 (9131) 84-7736<br>
Siemens AG, UB Med Fax: +49 (9131) 84-6365<br>
Postfach 3260
<br>
D-91052 Erlangen
<br>
Germany
</p>
<h2>Appendix B - Header section for medical applications
</h2>
<h3><p>Introduction
</h3>
<p>This appendix describes a proposal for a $$USERDATA header section (see 3.1.3) to be used
for medical applications.
<p>The extension of the CLI-Header proposed here describes the absolute minimum of labeling
considered necessary for medical applications. The definitions are part of work performed
within the Brite-Euram project Phidias towards the development of a format for the exchange
of segmentation results.
<p>The additions are primarily inserted in order to achieve unambiguous documentation and
labeling of the history of the data generation process and of the patient orientation in medical
applications. For the actual model building process they can be ignored. The CLI-file
generation programm must ensure that if x- and y-coordinates and the positive z-direction are
interpreted as righthand system, an anatomically correct model will result!
With respect to the coordinate interpretation the following assumptions common in slice
oriented imaging modalities are made:
<p>The "volume"/"model"/"stack of layers" coordinate system is defined as a righthand system
with the following properties
<br><pre>
* x- and y-axis lie within the image/layer plane with
(x) pointing from left to right
(y) pointing from top to bottom
* The z-axis is orthogonal to the slice/image/layer plane with
(z) pointing into the image plane
* The patient orientation is described by another righthand system defined by three base
vectors:
medial-rightlateral (nose->right ear) as x-axis
posterior-anterior (spine->chest) as y-axis: "FRONT-VECTOR"
caudo-cranial (foot->head) as z-axis: "HEAD-VECTOR"
</pre>
<p>The "cartesian coordinates" of HEAD-VECTOR and FRONT-VECTOR in the layer
coordinate system fully specify the patient orientation!
Gantry tilt must be taken into account when converting image matrix coordinates into the layer
coordinate system! For the sake of simplicity gantry tilt will be ignored, however, when
describing patient orientation (the same effect is caused by putting the patient on a slanted
couch).
<p>
<pre>
The following three examples use the definitions
axial: orthogonal to HEAD-VECTOR
coronal: orthogonal to FRONT-VECTOR
sagittal: contains HEAD-VECTOR and FRONT-VECTOR
Example 1: Patient in prone position, axial images reconstructed looking
in the cranial direction
HEAD-VECTOR = ( 0, 0, 1)
FRONT-VECTOR = ( 0, 1, 0)
Example 2: Coronal reconstructions looking onto the chest of the patient
HEAD-VECTOR = ( 0, -1, 0)
FRONT-VECTOR = ( 0, 0, -1)
Example 3: Sagittal reconstructions looking from the right to the left
side of the patient
HEAD-VECTOR = ( 0, -1, 0)
FRONT-VECTOR = ( 1, 0, 0)
Syntax
The $$USERDATA section of the CLI-Header (3.1.3) contains information in ASCII-format of
the following form (see also page 11)
userdata: {userdata-item}...{userdata-item}
userdata-item: keyword=text "/0" ("/0" = binary zero)
The following keywords are possible
institution-id Institution where primary data were generated
source-id Additional information specifying the creation of
this file, eg. software package and person generating
the data set
patient-id Qualifier uniquely specifying the patient
study-id Qualifier specifying the type of study performed
examination-date Date on which examination was performed
slice-thickness Slice thickness in mm
matrix-size Size of the image matrix (typically 512)
pixel-size Size of one pixel in mm
gantry-tilt Gantry tilt of the examination in degrees
front-vector vector pointing from "spine to chest " expressed in layer
coordinates in the form (x,y,z) (see introduction)
head-vector vector pointing from "feet to head" expressed in layer
coordinates in the form (x,y,z) (see introduction)
<pre>
<p>Example
<br>
institution-id=Orthopedic Hospital University of TestTown
<br>
source-id=Siemens 3D package Vx.y interactions by Dr. Bone
<br>
patient-id=Egon BadLegs I2389/94 20-Jun-1932
<br>
study-id=Custom prosthesis left leg
<br>
examination-date=20-Jun-1994
<br>
slice-thickness=2
<br>
matrix-size=512
<br>
pixel-size=0.218
<br>
gantry-tilt=-7
<br>
front-vector=(0,0,1)
<br>
head-vector=(0,1,0)
<br><br>
CLI specification page 21
</p>
</body>
</html>