-
Notifications
You must be signed in to change notification settings - Fork 21
/
baseline_PPMI1.py
386 lines (283 loc) · 13.2 KB
/
baseline_PPMI1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import sys
import os
import os.path
from lxml import etree
import collections
from create_gold_document import create_folder
from itertools import combinations, permutations, product
from baseline_OP import extract_event_CAT
from collections import Counter
"""
Baseline system PPMI for PLOT_LINK detection
- assume that all events are correctly identified and classified
- assume relations in same sentence and across sentences
- PLOT_LINK exists between every pair of events, excluding classes (NEG_)ACTION_REPORTING
and (NEG_)ACTION_CAUSTIVE (NEG_)ACTION_ASPECTUAL - if the PPMI score computed on the co-occurences per seminal
event is in the range on PPMI for th seed events.
Order of appearence in the pairs is assumed to be BEFORE --> RISING_ACTION
"""
def check_path(filepath):
if os.path.isdir(filepath):
if filepath[-1] != '/':
filepath += '/'
return filepath
def get_minimun(list_values):
"""
function to obtain the min. score of ppmi
:param list_values:
:return:
"""
min_score = min(list_values)
return min_score
def get_maximum(list_values):
"""
function to obtain the max score of ppmi
:param list_values:
:return:
"""
max_score = max(list_values)
return max_score
def normalize(value, min, max):
"""
funtion to normalize ppmi scores
:param value:
:param min:
:param max:
:return:
"""
norm_val = (float(value) - float(min))/(float(max) - float(min))
return norm_val
def read_cat_naf(cat_etree, naf_etree):
"""
function which read CAT and NAF data
:param cat_etree: ecb+ file in CAT - extract eligible annotated events
:param naf_etree: ecb+ naf file - extract event lemmas, event same sentence
:return: cat_event, dict_event_lemma, dict_event_same_sentence: 3 dictionaries
"""
cat_event = extract_event_CAT(cat_etree) # eligible events annotated in CAT; token ids
dict_event_lemma = collections.defaultdict(list) # event lemmatized; key: eventID CAT; value: lemma(s) composing the event
for elem in naf_etree.findall("terms/term"):
for k, v in cat_event.items():
if elem.attrib.get('id', 'null').replace('t', '') in v:
dict_event_lemma[k].append(elem.attrib.get('lemma', 'null'))
dict_event_same_sentence = {} # Events in the same sentence; key: sentence id; value: token id(s) composing the event
for elem in naf_etree.findall("text/wf"):
for k, v in cat_event.items():
if elem.attrib.get('id', 'null').replace('w', '') in v:
sentence_id = elem.attrib.get('sent', 'null')
if sentence_id in dict_event_same_sentence:
list_value = dict_event_same_sentence[sentence_id]
if k not in list_value:
list_value.append(k)
else:
list_value = []
list_value.append(k)
dict_event_same_sentence[sentence_id] = list_value
return cat_event, dict_event_lemma, dict_event_same_sentence
def cross_sentence(event_lemma_dict):
"""
function to create all possible pairs between event mentions in a file
:param event_lemma_dict: dictionary of event lemmas in file
:return: counter dictionary of event pairs in a file
"""
full_event_file = []
pairs_circumstantial_corpus = Counter([])
for k, v in event_lemma_dict.items():
full_event_file.append(k)
event_pairs_full = list(product(full_event_file, repeat=2))
for i in event_pairs_full:
pairs_circumstantial_corpus.update([i])
return pairs_circumstantial_corpus
def sentence_coocc(event_lemma_dict, event_same_sentence):
"""
funtion create pairs of events in the same sentence - same sentence event pairs
:param event_same_sentence: dictionary with list of event markable co-ccurring in same sentence
:param event_lemma_dict: dictionary of event ids and lemmas in file
:return: counter dictionary of event pairs in the same sentence
"""
same_sentence_event_lemma = collections.defaultdict(list)
pairs_circumstantial_sentence = {}
for k, v in event_lemma_dict.items():
for k1, v1 in event_same_sentence.items():
if k in v1:
event_string = "_".join(v)
same_sentence_event_lemma[k1].append(event_string)
for k, v in same_sentence_event_lemma.items():
if len(v) >= 2:
same_sent_pairs = list(product(v, repeat=2))
pairs_circumstantial_sentence[k] = same_sent_pairs
return pairs_circumstantial_sentence
def candidate_pairs_same_sent(list_ppmi_pairs, dict_pairs_data_same_sent, dict_event_lemmas, dict_event_same_sentence_naf, dict_event_tokes):
"""
:param list_ppmi_pairs: pairs of events obtained using PPMI thresholds
:param dict_pairs_data: the event pairs in the same sentence obtained from manual/automatically processed data; k = sentence id
:param dict_event_lemmas: the event trigger lemmas
:param dict_event_tokes: the event triggers (manual or automatically processed) with corresponding tokens
:return: list which contains candidate events (saved as tuple) in plot link relation
"""
rel_pairs_appo = {}
final_pairs = []
for i in list_ppmi_pairs:
for k, v in dict_pairs_data_same_sent.items():
if i in v:
source = i[0]
for k1, v1 in dict_event_lemmas.items():
match_event = "_".join(v1)
if source == match_event: # get event id from lemma
eligible_event_id = k1 # event markable id
if eligible_event_id in dict_event_same_sentence_naf[k]: # restrict markable to target sentence
sentence_pair = i + (k,)
rel_pairs_appo[sentence_pair] = (dict_event_tokes[eligible_event_id],)
for k, v in rel_pairs_appo.items():
target = k[1]
sentence = k[2]
for k1, v1 in dict_event_lemmas.items():
match_event = "_".join(v1)
if target == match_event: # get event id from lemma
eligible_target_id = k1
if eligible_target_id in dict_event_same_sentence_naf[sentence]:
rel_pairs = v + (dict_event_tokes[eligible_target_id],)
if rel_pairs not in final_pairs:
final_pairs.append(rel_pairs)
final_ordered_same = []
for i in final_pairs:
start = i[0][0]
end = i[1][0]
if int(start) > int(end):
new_pair = (i[1], i[0],)
if new_pair not in final_ordered_same:
final_ordered_same.append(new_pair)
else:
new_pair = i
if new_pair not in final_ordered_same:
final_ordered_same.append(i)
return final_ordered_same
def candidate_pairs_cross_sent(list_ppmi_pairs, dict_pairs_data_cross_sentence, dict_event_lemmas, dict_event_tokes):
"""
:param list_ppmi_pairs: pairs of events obtained using PPMI thresholds
:param dict_pairs_data_cross_sentence: the event pairs in the same sentence obtained from manual/automatically processed data; k = sentence id
:param dict_event_lemmas: the event trigger lemmas
:param dict_event_tokes: the event triggers (manual or automatically processed) with corresponding tokens
:return: list which contains candidate events (saved as tuple) in plot link relation
"""
rel_pairs_appo = {}
final_pairs_cross = []
for pairs_id, freq in dict_pairs_data_cross_sentence.items():
source, target = pairs_id
source_lemma = "_".join(dict_event_lemmas[source])
target_lemma = "_".join(dict_event_lemmas[target])
pair_norm = (source_lemma, target_lemma,)
pair_inv = (target_lemma, source_lemma,)
if pair_norm in list_ppmi_pairs:
token_source = dict_event_tokes[source]
token_target = dict_event_tokes[target]
pairs_tokens_norm = (token_source, token_target,)
if pairs_tokens_norm not in final_pairs_cross:
final_pairs_cross.append(pairs_tokens_norm)
if pair_inv in list_ppmi_pairs:
token_source = dict_event_tokes[source]
token_target = dict_event_tokes[target]
pairs_tokens_inv = (token_target, token_source,)
if pairs_tokens_inv not in final_pairs_cross:
final_pairs_cross.append(pairs_tokens_inv)
final_ordered_cross = []
for i in final_pairs_cross:
start = i[0][0]
end = i[1][0]
if int(start) > int(end):
new_pair = (i[1], i[0],)
if new_pair not in final_ordered_cross:
final_ordered_cross.append(new_pair)
else:
new_pair = i
if new_pair not in final_ordered_cross:
final_ordered_cross.append(i)
return final_ordered_cross
def read_input(catff, naff, pairs_same_sentence_ppmi, pairs_cross_sentence_ppmi):
ecbplus = etree.parse(catff, etree.XMLParser(remove_blank_text=True))
root_ecbplus = ecbplus.getroot()
root_ecbplus.getchildren()
doc_naf = etree.parse(naff, etree.XMLParser(remove_blank_text=True))
naf_root = doc_naf.getroot()
naf_root.getchildren()
event_tokens, event_lemmas, event_same_sentence = read_cat_naf(ecbplus, naf_root)
event_lemma_pairs_same_sentence = sentence_coocc(event_lemmas, event_same_sentence)
event_lemma_pairs_cross_sentence = cross_sentence(event_tokens)
plot_link_same_sent = candidate_pairs_same_sent(pairs_same_sentence_ppmi,event_lemma_pairs_same_sentence,event_lemmas,event_same_sentence,event_tokens)
plot_link_cross_sent = candidate_pairs_cross_sent(pairs_cross_sentence_ppmi, event_lemma_pairs_cross_sentence, event_lemmas, event_tokens)
plot_link = plot_link_same_sent + plot_link_cross_sent
plot_link_cleaned = []
plot_link_cleaned = [i for i in plot_link if i not in plot_link_cleaned]
return plot_link_cleaned
def produce_output(list_pairs, outfile):
for i in list_pairs:
output = open(outfile, "a")
output.writelines("_".join(i[0]) + "\t" + "_".join(i[1]) + "\tPRECONDITION" + "\n")
output.close()
def baseline_v3(input_cat, input_naf, same_sentence_pairs, cross_sentence_pairs, outdir):
input_dir_cat = check_path(input_cat)
input_dir_naf = check_path(input_naf)
ecb_subfolder = os.path.dirname(input_dir_cat).split("/")[-1]
final_outdir = os.path.join(outdir, ecb_subfolder)
if final_outdir[-1] != '/':
final_outdir += '/'
create_folder(final_outdir)
output_dir = check_path(final_outdir)
file_names_ecbplus = [(input_dir_cat, f) for f in os.listdir(input_dir_cat)]
for f in file_names_ecbplus:
if f[1].endswith("plus.xml.xml"):
naff = input_dir_naf + f[1].split(".xml.xml")[0] + ".xml.naf.fix.xml"
outfile = output_dir + f[1].split(".xml.xml")[0] + ".base.out"
candidate_pairs = read_input(input_dir_cat + f[1], naff, same_sentence_pairs, cross_sentence_pairs)
produce_output(candidate_pairs, outfile)
def read_ppmi_data(topic_ppmi):
"""
function which read PPMI score for seminal events, filter pairs per ppmi, provide pairs
INTERNAL = ppmi score computed using freq from the seminal events ECB+
EXTERNAL = ppmi score computed using freq from Google Ngram
:param topic_ppmi:
:return:
"""
ppmi_val_same = []
ppmi_pairs_same = {}
same_sentence_pairs = []
same_sentence = topic_ppmi + "same_sentence_ppmi.sm"
with open(same_sentence, 'r') as ppmi_same:
for line in ppmi_same:
line_stripped = line.strip()
line_splitted = line_stripped.split("\t")
ppmi_val_same.append(line_splitted[2])
ppmi_pairs_same[(line_splitted[0], line_splitted[1],)] = line_splitted[2]
min_ppmi = get_minimun(ppmi_val_same)
max_ppmi = get_maximum(ppmi_val_same)
for k, v in ppmi_pairs_same.items():
ppmi_norm = normalize(v, min_ppmi, max_ppmi)
if ppmi_norm >= 0.4 and ppmi_norm <= 0.763: # seeds + dev
same_sentence_pairs.append(k)
ppmi_val_cross = []
ppmi_pairs_cross = {}
cross_sentence_pairs = []
cross_sentence = topic_ppmi + "full_corpus_ppmi.sm"
with open(cross_sentence, 'r') as ppmi_cross:
for line in ppmi_cross:
line_stripped = line.strip()
line_splitted = line_stripped.split("\t")
ppmi_val_cross.append(line_splitted[2])
ppmi_pairs_cross[(line_splitted[0], line_splitted[1],)] = line_splitted[2]
min_ppmi_cross = get_minimun(ppmi_val_cross)
max_ppmi_cross = get_maximum(ppmi_val_cross)
for k, v in ppmi_pairs_cross.items():
ppmi_norm = normalize(v, min_ppmi_cross, max_ppmi_cross)
if ppmi_norm >= 0.4 and ppmi_norm <= 0.763: #seeds + dev
cross_sentence_pairs.append(k)
return same_sentence_pairs, cross_sentence_pairs
def main(argv = None):
if argv is None:
argv = sys.argv
if len(argv) < 5:
print("Usage python3 baseline_v3.py ECB+_CAT ECB+_naf ppmi_topic outfolder")
else:
same_sentence, cross_sentence = read_ppmi_data(argv[3])
baseline_v3(argv[1], argv[2], same_sentence, cross_sentence, argv[4])
if __name__ == '__main__':
main()