-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathfhog.hpp
128 lines (110 loc) · 3.9 KB
/
fhog.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/*
- c++ wrapper for the piotr toolbox
Created by Tomas Vojir, 2014
*/
#ifndef FHOG_HEADER_7813784354687
#define FHOG_HEADER_7813784354687
#include <vector>
#include <opencv2/opencv.hpp>
#include <stdio.h>
#include "gradientMex.h"
class FHoG
{
public:
//description: extract hist. of gradients(use_hog == 0), hog(use_hog == 1) or fhog(use_hog == 2)
//input: float one channel image as input, hog type
//return: computed descriptor
static std::vector<cv::Mat> extract(const cv::Mat & img, int use_hog = 2, int bin_size = 4, int n_orients = 9, int soft_bin = -1, float clip = 0.2)
{
// d image dimension -> gray image d = 1
// h, w -> height, width of image
// full -> ??
// I -> input image, M, O -> mag, orientation OUTPUT
cv::Mat patch = img.clone();
if (patch.channels() == 3)
cv::cvtColor(patch, patch, CV_BGR2GRAY);
patch.convertTo(patch, CV_32FC1, 1.0 / 255);
int h = img.rows, w = img.cols, d = 1;
bool full = true;
if (h < 2 || w < 2) {
std::cerr << "I must be at least 2x2." << std::endl;
return std::vector<cv::Mat>();
}
// //image rows-by-rows
// float * I = new float[h*w];
// for (int y = 0; y < h; ++y) {
// const float * row_ptr = img.ptr<float>(y);
// for (int x = 0; x < w; ++x) {
// I[y*w + x] = row_ptr[x];
// }
// }
//image cols-by-cols
float * I = new float[h*w];
for (int x = 0; x < w; ++x) {
for (int y = 0; y < h; ++y) {
I[x*h + y] = patch.at<float>(y, x);
//I[x*h + y] = 150 / 255.f;
}
}
/* float * I = new float[h*w];
cv::Mat im = img.clone();
for (int y = 0; y < h; ++y)
{
unsigned char *data = im.ptr<unsigned char>(y);
for (int x = 0; x < w; ++x)
{
I[x*h + y] = data[x] / 255.f;
}
}*/
//clock_t startTime, endTime;
// startTime = clock();
float *M = new float[h*w], *O = new float[h*w];
gradMag(I, M, O, h, w, d, full);
int n_chns = (use_hog == 0) ? n_orients : (use_hog==1 ? n_orients*4 : n_orients*3+5);
int hb = h/bin_size, wb = w/bin_size;
float *H = new float[hb*wb*n_chns];
memset(H, 0, hb*wb*n_chns*sizeof(float));
if (use_hog == 0) {
full = false; //by default
gradHist( M, O, H, h, w, bin_size, n_orients, soft_bin, full );
} else if (use_hog == 1) {
full = false; //by default
hog( M, O, H, h, w, bin_size, n_orients, soft_bin, full, clip );
} else {
fhog( M, O, H, h, w, bin_size, n_orients, soft_bin, clip );
}
//convert, assuming row-by-row-by-channel storage
std::vector<cv::Mat> res;
int n_res_channels = (use_hog == 2) ? n_chns-1 : n_chns; //last channel all zeros for fhog
res.reserve(n_res_channels);
for (int i = 0; i < n_res_channels; ++i) {
//output rows-by-rows
// cv::Mat desc(hb, wb, CV_32F, (H+hb*wb*i));
//output cols-by-cols
cv::Mat desc(hb, wb, CV_32F);
for (int x = 0; x < wb; ++x) {
for (int y = 0; y < hb; ++y) {
desc.at<float>(y,x) = H[i*hb*wb + x*hb + y];
}
}
/*for (int y = 0; y < hb; ++y)
{
float *data = desc.ptr<float>(y);
for (int x = 0; x < wb; ++x)
{
data[x] = H[i*hb*wb + x*hb + y];
}
}*/
res.push_back(desc.clone());
}
/*endTime = clock();
std::cout << "Totle Time : " << (double)(endTime - startTime) / CLOCKS_PER_SEC *1000.0 << "ms" << std::endl;*/
//clean
delete [] I;
delete [] M;
delete [] O;
delete [] H;
return res;
}
};
#endif //FHOG_HEADER_7813784354687