forked from ShuoYang-1998/Few_Shot_Distribution_Calibration
-
Notifications
You must be signed in to change notification settings - Fork 0
/
save_plk.py
112 lines (89 loc) · 3.4 KB
/
save_plk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from __future__ import print_function
import argparse
import csv
import os
import collections
import pickle
import random
import numpy as np
import torch
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from io_utils import parse_args
from data.datamgr import SimpleDataManager , SetDataManager
import configs
import wrn_model
import torch.nn.functional as F
from io_utils import parse_args, get_resume_file ,get_assigned_file
from os import path
use_gpu = torch.cuda.is_available()
class WrappedModel(nn.Module):
def __init__(self, module):
super(WrappedModel, self).__init__()
self.module = module
def forward(self, x):
return self.module(x)
def save_pickle(file, data):
with open(file, 'wb') as f:
pickle.dump(data, f)
def load_pickle(file):
with open(file, 'rb') as f:
return pickle.load(f)
def extract_feature(val_loader, model, checkpoint_dir, tag='last',set='base'):
save_dir = '{}/{}'.format(checkpoint_dir, tag)
if os.path.isfile(save_dir + '/%s_features.plk'%set):
data = load_pickle(save_dir + '/%s_features.plk'%set)
return data
else:
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
#model.eval()
with torch.no_grad():
output_dict = collections.defaultdict(list)
for i, (inputs, labels) in enumerate(val_loader):
# compute output
inputs = inputs.cuda()
labels = labels.cuda()
outputs,_ = model(inputs)
outputs = outputs.cpu().data.numpy()
for out, label in zip(outputs, labels):
output_dict[label.item()].append(out)
all_info = output_dict
save_pickle(save_dir + '/%s_features.plk'%set, all_info)
return all_info
if __name__ == '__main__':
params = parse_args('test')
params.model = 'WideResNet28_10'
params.method = 'S2M2_R'
loadfile_base = configs.data_dir[params.dataset] + 'base.json'
loadfile_novel = configs.data_dir[params.dataset] + 'novel.json'
if params.dataset == 'miniImagenet' or params.dataset == 'CUB':
datamgr = SimpleDataManager(84, batch_size = 256)
base_loader = datamgr.get_data_loader(loadfile_base, aug=False)
novel_loader = datamgr.get_data_loader(loadfile_novel, aug = False)
checkpoint_dir = '%s/checkpoints/%s/%s_%s' %(configs.save_dir, params.dataset, params.model, params.method)
modelfile = get_resume_file(checkpoint_dir)
if params.model == 'WideResNet28_10':
model = wrn_model.wrn28_10(num_classes=params.num_classes)
model = model.cuda()
cudnn.benchmark = True
checkpoint = torch.load(modelfile)
state = checkpoint['state']
state_keys = list(state.keys())
callwrap = False
if 'module' in state_keys[0]:
callwrap = True
if callwrap:
model = WrappedModel(model)
model_dict_load = model.state_dict()
model_dict_load.update(state)
model.load_state_dict(model_dict_load)
model.eval()
output_dict_base = extract_feature(base_loader, model, checkpoint_dir, tag='last', set='base')
print("base set features saved!")
output_dict_novel=extract_feature(novel_loader, model, checkpoint_dir, tag='last',set='novel')
print("novel features saved!")