-
Notifications
You must be signed in to change notification settings - Fork 405
/
plot_2D.py
205 lines (168 loc) · 8.44 KB
/
plot_2D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
"""
2D plotting funtions
"""
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import pyplot as plt
from matplotlib import cm
import h5py
import argparse
import numpy as np
from os.path import exists
import seaborn as sns
def plot_2d_contour(surf_file, surf_name='train_loss', vmin=0.1, vmax=10, vlevel=0.5, show=False):
"""Plot 2D contour map and 3D surface."""
f = h5py.File(surf_file, 'r')
x = np.array(f['xcoordinates'][:])
y = np.array(f['ycoordinates'][:])
X, Y = np.meshgrid(x, y)
if surf_name in f.keys():
Z = np.array(f[surf_name][:])
elif surf_name == 'train_err' or surf_name == 'test_err' :
Z = 100 - np.array(f[surf_name][:])
else:
print ('%s is not found in %s' % (surf_name, surf_file))
print('------------------------------------------------------------------')
print('plot_2d_contour')
print('------------------------------------------------------------------')
print("loading surface file: " + surf_file)
print('len(xcoordinates): %d len(ycoordinates): %d' % (len(x), len(y)))
print('max(%s) = %f \t min(%s) = %f' % (surf_name, np.max(Z), surf_name, np.min(Z)))
print(Z)
if (len(x) <= 1 or len(y) <= 1):
print('The length of coordinates is not enough for plotting contours')
return
# --------------------------------------------------------------------
# Plot 2D contours
# --------------------------------------------------------------------
fig = plt.figure()
CS = plt.contour(X, Y, Z, cmap='summer', levels=np.arange(vmin, vmax, vlevel))
plt.clabel(CS, inline=1, fontsize=8)
fig.savefig(surf_file + '_' + surf_name + '_2dcontour' + '.pdf', dpi=300,
bbox_inches='tight', format='pdf')
fig = plt.figure()
print(surf_file + '_' + surf_name + '_2dcontourf' + '.pdf')
CS = plt.contourf(X, Y, Z, cmap='summer', levels=np.arange(vmin, vmax, vlevel))
fig.savefig(surf_file + '_' + surf_name + '_2dcontourf' + '.pdf', dpi=300,
bbox_inches='tight', format='pdf')
# --------------------------------------------------------------------
# Plot 2D heatmaps
# --------------------------------------------------------------------
fig = plt.figure()
sns_plot = sns.heatmap(Z, cmap='viridis', cbar=True, vmin=vmin, vmax=vmax,
xticklabels=False, yticklabels=False)
sns_plot.invert_yaxis()
sns_plot.get_figure().savefig(surf_file + '_' + surf_name + '_2dheat.pdf',
dpi=300, bbox_inches='tight', format='pdf')
# --------------------------------------------------------------------
# Plot 3D surface
# --------------------------------------------------------------------
fig = plt.figure()
ax = Axes3D(fig)
surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, linewidth=0, antialiased=False)
fig.colorbar(surf, shrink=0.5, aspect=5)
fig.savefig(surf_file + '_' + surf_name + '_3dsurface.pdf', dpi=300,
bbox_inches='tight', format='pdf')
f.close()
if show: plt.show()
def plot_trajectory(proj_file, dir_file, show=False):
""" Plot optimization trajectory on the plane spanned by given directions."""
assert exists(proj_file), 'Projection file does not exist.'
f = h5py.File(proj_file, 'r')
fig = plt.figure()
plt.plot(f['proj_xcoord'], f['proj_ycoord'], marker='.')
plt.tick_params('y', labelsize='x-large')
plt.tick_params('x', labelsize='x-large')
f.close()
if exists(dir_file):
f2 = h5py.File(dir_file,'r')
if 'explained_variance_ratio_' in f2.keys():
ratio_x = f2['explained_variance_ratio_'][0]
ratio_y = f2['explained_variance_ratio_'][1]
plt.xlabel('1st PC: %.2f %%' % (ratio_x*100), fontsize='xx-large')
plt.ylabel('2nd PC: %.2f %%' % (ratio_y*100), fontsize='xx-large')
f2.close()
fig.savefig(proj_file + '.pdf', dpi=300, bbox_inches='tight', format='pdf')
if show: plt.show()
def plot_contour_trajectory(surf_file, dir_file, proj_file, surf_name='loss_vals',
vmin=0.1, vmax=10, vlevel=0.5, show=False):
"""2D contour + trajectory"""
assert exists(surf_file) and exists(proj_file) and exists(dir_file)
# plot contours
f = h5py.File(surf_file,'r')
x = np.array(f['xcoordinates'][:])
y = np.array(f['ycoordinates'][:])
X, Y = np.meshgrid(x, y)
if surf_name in f.keys():
Z = np.array(f[surf_name][:])
fig = plt.figure()
CS1 = plt.contour(X, Y, Z, levels=np.arange(vmin, vmax, vlevel))
CS2 = plt.contour(X, Y, Z, levels=np.logspace(1, 8, num=8))
# plot trajectories
pf = h5py.File(proj_file, 'r')
plt.plot(pf['proj_xcoord'], pf['proj_ycoord'], marker='.')
# plot red points when learning rate decays
# for e in [150, 225, 275]:
# plt.plot([pf['proj_xcoord'][e]], [pf['proj_ycoord'][e]], marker='.', color='r')
# add PCA notes
df = h5py.File(dir_file,'r')
ratio_x = df['explained_variance_ratio_'][0]
ratio_y = df['explained_variance_ratio_'][1]
plt.xlabel('1st PC: %.2f %%' % (ratio_x*100), fontsize='xx-large')
plt.ylabel('2nd PC: %.2f %%' % (ratio_y*100), fontsize='xx-large')
df.close()
plt.clabel(CS1, inline=1, fontsize=6)
plt.clabel(CS2, inline=1, fontsize=6)
fig.savefig(proj_file + '_' + surf_name + '_2dcontour_proj.pdf', dpi=300,
bbox_inches='tight', format='pdf')
pf.close()
if show: plt.show()
def plot_2d_eig_ratio(surf_file, val_1='min_eig', val_2='max_eig', show=False):
""" Plot the heatmap of eigenvalue ratios, i.e., |min_eig/max_eig| of hessian """
print('------------------------------------------------------------------')
print('plot_2d_eig_ratio')
print('------------------------------------------------------------------')
print("loading surface file: " + surf_file)
f = h5py.File(surf_file,'r')
x = np.array(f['xcoordinates'][:])
y = np.array(f['ycoordinates'][:])
X, Y = np.meshgrid(x, y)
Z1 = np.array(f[val_1][:])
Z2 = np.array(f[val_2][:])
# Plot 2D heatmaps with color bar using seaborn
abs_ratio = np.absolute(np.divide(Z1, Z2))
print(abs_ratio)
fig = plt.figure()
sns_plot = sns.heatmap(abs_ratio, cmap='viridis', vmin=0, vmax=.5, cbar=True,
xticklabels=False, yticklabels=False)
sns_plot.invert_yaxis()
sns_plot.get_figure().savefig(surf_file + '_' + val_1 + '_' + val_2 + '_abs_ratio_heat_sns.pdf',
dpi=300, bbox_inches='tight', format='pdf')
# Plot 2D heatmaps with color bar using seaborn
ratio = np.divide(Z1, Z2)
print(ratio)
fig = plt.figure()
sns_plot = sns.heatmap(ratio, cmap='viridis', cbar=True, xticklabels=False, yticklabels=False)
sns_plot.invert_yaxis()
sns_plot.get_figure().savefig(surf_file + '_' + val_1 + '_' + val_2 + '_ratio_heat_sns.pdf',
dpi=300, bbox_inches='tight', format='pdf')
f.close()
if show: plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Plot 2D loss surface')
parser.add_argument('--surf_file', '-f', default='', help='The h5 file that contains surface values')
parser.add_argument('--dir_file', default='', help='The h5 file that contains directions')
parser.add_argument('--proj_file', default='', help='The h5 file that contains the projected trajectories')
parser.add_argument('--surf_name', default='train_loss', help='The type of surface to plot')
parser.add_argument('--vmax', default=10, type=float, help='Maximum value to map')
parser.add_argument('--vmin', default=0.1, type=float, help='Miminum value to map')
parser.add_argument('--vlevel', default=0.5, type=float, help='plot contours every vlevel')
parser.add_argument('--zlim', default=10, type=float, help='Maximum loss value to show')
parser.add_argument('--show', action='store_true', default=False, help='show plots')
args = parser.parse_args()
if exists(args.surf_file) and exists(args.proj_file) and exists(args.dir_file):
plot_contour_trajectory(args.surf_file, args.dir_file, args.proj_file,
args.surf_name, args.vmin, args.vmax, args.vlevel, args.show)
elif exists(args.proj_file) and exists(args.dir_file):
plot_trajectory(args.proj_file, args.dir_file, args.show)
elif exists(args.surf_file):
plot_2d_contour(args.surf_file, args.surf_name, args.vmin, args.vmax, args.vlevel, args.show)