-
Notifications
You must be signed in to change notification settings - Fork 0
/
chapter3.tex
241 lines (238 loc) · 16.1 KB
/
chapter3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
%%%%
%%
%%
%%%%
%%%% CHAPTER 3
%%%% CHAPTER 3
%%%%
%%
%%
%%%%
\section{Chapter 3 Solutions}
\begin{center}\hyperref[toc]{\^{}\^{}}\end{center}
\setcounter{problem}{0}
\setcounter{solution}{0}
\begin{center}\begin{tabular}{lllllllllllllllllllllllll}
\hyperref[problem1chapter3]{P1} & \hyperref[problem2chapter3]{P2} & \hyperref[problem3chapter3]{P3} & \hyperref[problem4chapter3]{P4} & \hyperref[problem5chapter3]{P5} & \hyperref[problem6chapter3]{P6} & \hyperref[problem7chapter3]{P7}
\end{tabular}\end{center}
\begin{problem}\label{problem1chapter3}
With the assumptions of Watson's lemma, show, with the aid of the convergence of the series $F(t) = \displaystyle\sum_{k=1}^{\infty} a_n \exp_t \left( \dfrac{k}{r} - 1 \right)$ in $|t| \leq a + \delta$, that for $0 \leq t \leq a$, there exists a positive constant $c_1$ such that
$$\left| F(t) - \displaystyle\sum_{k=1}^n a_k \exp_t \left(\dfrac{k}{r} - 1 \right) \right| < c_1 \exp_t \left( \dfrac{n+1}{r} - 1 \right).$$
\end{problem}
\begin{solution}
We wish to show that there exists $c_1$ such that for $0 \leq t \leq a$ (see problem (2) for $t > a$),
$$\left| F(t) - \displaystyle\sum_{k=1}^n a_kt^{\frac{k}{r}-1} \right| < c_1 t^{\frac{n+1}{r} - 1}$$
under the condition of Watson's lemma.
By the convergence of $\displaystyle\sum_{n=1}^{\infty} a_n t^{\frac{n}{r}-1} = F(t)$ in $|t| \leq a$ we write
$$\begin{array}{ll}
\left| F(t) - \displaystyle\sum_{k=1}^n a_k t^{\frac{k}{r}-1} \right| &= \left| \displaystyle\sum_{k=n+1}^{\infty} a_k t^{\frac{k}{r}-1} \right| \\
&= t^{\frac{n+1}{r}-1} \left| \displaystyle\sum_{k=n+1}^{\infty} a_k t^{\frac{k-n-1}{r}} \right| \\
&\leq t^{\frac{n+1}{r}-1} \left| \displaystyle\sum_{k=n+1}^{\infty} a_k a^{\frac{k-n-1}{r}} \right| \\
&< c_1 t^{\frac{n+1}{r}-1},
\end{array}$$
where $c_1 > \left|\displaystyle\sum_{k=n+1}^{\infty} a_k a^{\frac{k-n-1}{r}} \right|$.
Remember from Watson's lemma
$$F(t) = \displaystyle\sum_{k=1}^{\infty} a_n t^{\frac{n}{r}-1}$$
for $|t| \leq a+\delta$ where $\delta > 0.$ $\qed$
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem2chapter3}
With the assumptions of Watson's lemma, page 41, show that for $t > a$, there exist positive constants $c_2$ and $\beta$ such that
$$\left| F(t) - \displaystyle\sum_{k=1}^n a_k \exp_t \left( \dfrac{k}{r} - 1 \right) \right| < c_2 \exp_t \left( \dfrac{n+1}{r} - 1 \right) e^{\beta t}.$$
\end{problem}
\begin{solution}
Under the assumption of Watson's lemma we wish to show that for $t > a$, there exist constants $c_2, \beta$ such that
$$\left| F(t) - \displaystyle\sum_{k=1}^n a_kt^{\frac{k}{r}-1} \right| < c_2 e^{\beta t} t^{\frac{n+1}{r} - 1}.$$
Now for $t > 0$, we have given $|F(t)| < ke^{bt}.$ Hence
$$\begin{array}{ll} \left| F(t) - \displaystyle\sum_{k=1}^n a_k t^{\frac{k}{r}-1} \right| &< k e^{bt} + t^{\frac{n+1}{r}-1} \left| \displaystyle\sum_{k=1}^n a_k t^{\frac{k-n-1}{r}} \right| \\
&= k e^{bt} + \left| \displaystyle\sum_{k=1}^n a_kt^{\frac{k}{r}-1} \right|,
\end{array}$$
but $k-n-1 < 0$ and $t > a$, so
$$\left| F(t) - \displaystyle\sum_{k=1}^n a_k t^{\frac{k}{r}-1} \right| < ke^{bt} + t^{\frac{n+1}{r}-1} \left| \displaystyle\sum_{k=1}^n a_k a^{\frac{k-n-1}{r}} \right|$$
but $\left| \displaystyle\sum_{k=1}^{\infty} a_k a^{\frac{k}{r}} \right|$ converges. Hence, since $t > a$, there exist constants $M_1, M_2$ such that
$$\begin{array}{ll}
\left| F(t) - \displaystyle\sum_{k=1}^n a_k t^{\frac{k}{r}-1} \right| &< M_1 e^{bt} t^{\frac{n+1}{r}-1} \left( \dfrac{a}{t} \right)^{\frac{n+1}{r}-1} + M_2 t^{\frac{n+1}{r}-1} \\
&< M_1 e^{bt} t^{\frac{n+1}{r}-1} + M_2 t^{\frac{n+1}{r}-1} e^{bt} \\
&< c_1 e^{\beta t} t^{\frac{n+1}{r}-1}. \qed
\end{array}$$
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem3chapter3}
Derive the asymptotic expansion (6) immediately preceding these exercises by applying Watson's lemma to the function
$$f'(x) = -\displaystyle\int_0^{\infty} \dfrac{te^{-xt}}{t+t^2} \mathrm{d}t$$
and then integrating the resultant expansion term by term.
\end{problem}
\begin{solution}
Consider Watson's lemma with $F(t) = \dfrac{-t}{1+t^2}$. Hence
$$F(t) = \dfrac{-t}{1+t^2} = \displaystyle\sum_{n=0}^{\infty} (-1)^{n+1} t^{2n+1} = \displaystyle\sum_{n=1}^{\infty} (-1)^n t^{2n-1}; 0 \leq t < 1.$$
Choose $r = \dfrac{1}{2}$, $a = \dfrac{1}{2}$, $\delta = \dfrac{1}{3}$. Also for $t \geq 0$, $e^t \geq 1$ and $\dfrac{t}{1+t^2} < \dfrac{1}{2}$.
Hence
$$|F(t)| < 1 \cdot e^t; t \geq \dfrac{1}{2},$$
satisfying condition (2) of Watson's Lemma, and
$$F(t) = \displaystyle\sum_{n=1}^{\infty} (-1)^n t^{\frac{n}{1/2}-1}$$
for $|t| \leq \dfrac{1}{2} + \dfrac{1}{3} = \dfrac{5}{6}$.
Hence by Watson's lemma for $f'(x) = \displaystyle\int_0^{\infty} \dfrac{-te^{-xt}}{1+t^2} \mathrm{d}t$ we have
$$f'(x) \sim \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^n \Gamma \left( \dfrac{n}{1/2} \right)}{x^{2n}} = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^n (2n-1)!}{x^{2n}}.$$
Then
$$\displaystyle\int_x^{\infty} f'(s) \mathrm{d}s \sim \displaystyle\sum_{n=1}^{\infty} \displaystyle\int_x^{\infty} \dfrac{(-1)^n(2n-1)!}{s^{2n}} \mathrm{d}s.$$
After integrating, this becomes
$$(*) \hspace{5pt} \displaystyle\int_x^{\infty} f'(s) \mathrm{d}s \sim \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^n (2n-2)!}{x^{2n-1}}.$$
Now
$$\dfrac{\mathrm{d}}{\mathrm{d}x} \displaystyle\int_0^{\infty} \dfrac{e^{-xt}}{1+t^2}\mathrm{d}t = \displaystyle\int_0^{\infty} \dfrac{-t e^{-xt}}{1+t^2} \mathrm{d}t \equiv f'(x).$$
Let \textquotedblleft A\textquotedblright {} label the integral in the middle of the last formula. Hence
$$f(x) = \displaystyle\int_0^{\infty} \dfrac{e^{-xt}}{1+t^2} \mathrm{d}t,$$
which we label as \textquotedblleft B\textquotedblright.
Also note that integrals \textquotedblleft A\textquotedblright {} and \textquotedblleft B\textquotedblright {} are uniformly convergent. Hence
$$\displaystyle\lim_{x \rightarrow \infty} f(x) = \displaystyle\int_0^{\infty} \displaystyle\lim_{x \rightarrow \infty} \dfrac{e^{-xt}}{1+t^2} \mathrm{d}t = 0.$$
Therefore
$$\displaystyle\int_x^{\infty} f'(s) \mathrm{d}s = f(s) \Bigm| _x^{\infty} = 0 - f(x).$$
By $(*)$, for $\mathrm{Re}(x) > 0$ and as $|x| \rightarrow \infty$,
$$0 - f(x) \sim \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^n (2n-2)!}{x^{2n-1}}.$$
So for $\mathrm{Re}(x)>0$ and as $|x| \rightarrow \infty$,
$$\begin{array}{ll}
f(x) &= \displaystyle\int_0^{\infty} \dfrac{e^{-xt}}{1+t^2} \mathrm{d}t \\
&\sim - \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^n(2n-2)!}{x^{2n-1}} \\
&\sim \displaystyle\sum_{n=0}^{\infty} \dfrac{(-1)^n (2n)!}{x^{2n+1}}.
\end{array}$$
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem4chapter3}
Establish (6), page 43, directly, first showing that
$$f(x) - \displaystyle\sum_{k=0}^n (-1)^k (2k)! x^{-2k-1} = (-1)^{n+1} \displaystyle\int_0^{\infty} \dfrac{e^{-xt}t^{2n+2}}{1+t^2} \mathrm{d}t,$$
and thus obtain not only (6) but also a bound on the error made in computing with the series involved.
\end{problem}
\begin{solution}(Solution by Leon Hall)
Because $\dfrac{1}{1+t^2} = \displaystyle\sum_{k=0}^{\infty} (-1)^k t^{2k}$, we have
$$\begin{array}{ll}
\dfrac{1}{1+t^2} &= \displaystyle\sum_{k=0}^n (-1)^k t^{2k} + \displaystyle\sum_{k=n+1}^{\infty} (-1)^k t^{2k} \\
&=\displaystyle\sum_{k=0}^n (-1)^k t^{2k} + (-1)^{n+1} t^{2n+2} \displaystyle\sum_{k=0}^{\infty} (-1)^k t^{2k} \\
&=\displaystyle\sum_{k=0}^n (-1)^k t^{2k} + (-1)^{n+1} \dfrac{t^{2n+2}}{1+t^2}.
\end{array}$$
So
$$\begin{array}{ll}
f(x) &= \displaystyle\int_0^{\infty} \dfrac{e^{-xt}}{1+t^2} \mathrm{d}t \\
&= \displaystyle\int_0^{\infty} e^{-xt} \displaystyle\sum_{k=0}^n (-1)^k t^{2k} \mathrm{d}t + (-1)^{n+1} \displaystyle\int_0^{\infty} \dfrac{e^{-xt} t^{2n+2}}{1+t^2} \mathrm{d}t \\
&=\displaystyle\sum_{k=0}^n (-1)^k \displaystyle\int_0^{\infty} e^{-xt}t^{2k}\mathrm{d}t + (-1)^{n+1} \displaystyle\int_0^{\infty} \dfrac{e^{-xt}t^{2n+2}}{1+t^2} \mathrm{d}t.
\end{array}$$
Integration by parts give the reduction formula (for $x$ as specified)
$$\displaystyle\int_0^{\infty} e^{-xt}t^{2k} \mathrm{d}t = \dfrac{2k(2k-1)}{x^2} \displaystyle\int_0^{\infty}e^{-xt} t^{2k-2} \mathrm{d}t.$$
This, plus the fact that $\displaystyle\int_0^{\infty}e^{-xt}\mathrm{d}t = \dfrac{1}{x}$, yields
$$f(x) = \displaystyle\sum_{k=0}^n (-1)^k \dfrac{(2k)!}{x^{2k+1}} + (-1)^{n+1} \displaystyle\int_0^{\infty} \dfrac{e^{-xt} t^{2n+2}}{1+t^2} \mathrm{d}t.$$
Then
$$\begin{array}{ll}
\left| f(x) - \displaystyle\sum_{k=0}^n (-1)^k \dfrac{(2k)!}{x^{2k+1}} \right| &= \left| \displaystyle\int_0^{\infty} \dfrac{e^{-xt} t^{2n+2}}{1+t^2} \mathrm{d}t \right| \\
&< \displaystyle\int_0^{\infty} |e^{-xt}| t^{2n+2} \mathrm{d}t \\
&< \displaystyle\int_0^{\infty} e^{-Re(x)t} t^{2n+2} \mathrm{d}t \\
&= \dfrac{(2n+2)!}{[Re(x)]^{2n+3}}.
\end{array}$$
In the region $|\mathrm{arg \hspace{3pt}} x| \leq \dfrac{\pi}{2} - \Delta, \Delta > 0$, if $\mathrm{Re}(x) > N$, then $|x| > \dfrac{N}{\sin(\Delta)}$ and as $|x| \rightarrow \infty$,
$$\dfrac{(2n+2)!}{[Re(x)]^{2n+3}} = \mathcal{O} \left( |x|^{-2n-2} \right).$$
So
$$f(x) \sim \displaystyle\sum_{n=0}^{\infty} (-1)^k \dfrac{(2k)!}{x^{2k+1}}$$
as $|x| \rightarrow \infty$ in the sector $|\mathrm{arg \hspace{3pt}} x| < \dfrac{\pi}{2} - \Delta, \Delta > 0$.
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem5chapter3}
Use integration by parts to establish that for real $x \rightarrow \infty$,
$$\displaystyle\int_x^{\infty} e^{-t}t^{-1} \mathrm{d}t \sim e^{-x} \displaystyle\sum_{n=0}^{\infty} (-1)^n n! x^{-n-1}.$$
\end{problem}
\begin{solution}
Consider $f(x) = \displaystyle\int_x^{\infty} \dfrac{e^{-t}}{t} \mathrm{d}t$ as $x \rightarrow \infty$.
Using integration by parts,
$$\begin{array}{ll|ll}
u=\dfrac{1}{t} & \mathrm{d}v=e^{-t}\mathrm{d}t & f(x) = \left[ -\dfrac{1}{t}e^{-t} \right|_x^{\infty} - \displaystyle\int_x^{\infty} t^{-2} e^{-t}\mathrm{d}t \\
u=-\dfrac{1}{t^2} & v = -e^{-t} & \phantom{f(x)}= \dfrac{1}{x} e^{-x} + \left[ \dfrac{1}{t^2}e^{-t} \right|_x^{\infty} + 2 \displaystyle\int_0^{\infty} \dfrac{1}{t^3}e^{-t}\mathrm{d}t \\
u=\dfrac{1}{t^2} & \mathrm{d}v = e^{-t} \mathrm{d}t & \phantom{f(x)}=\!\left[ \dfrac{e^{-x}}{x} - \dfrac{e^{-x}}{x^2} \right]\!-\!\left[\dfrac{2e^{-t}}{t^3} \right]_x^{\infty}\!-\!\!2 \cdot 3\!\displaystyle\int_x^{\infty}\!\dfrac{1}{t^4}e^{-t}\mathrm{d}t \\
\mathrm{d}u = -2\dfrac{1}{t^3} & v = -e^{-t} \\
&= \ldots .
\end{array}$$
This pattern can clearly continue forever, so we can write
$$f(x) = e^{-x} \displaystyle\sum_{k=0}^n \dfrac{(-1)^k k!}{x^{k+1}} + (-1)^{n+1}(n+1)! \displaystyle\int_x^{\infty} t^{-(n+2)}e^{-t} \mathrm{d}t.$$
Now since $0 < x < t$,
$$\begin{array}{ll}
\left| e^x f(x) - \displaystyle\sum_{k=0}^n \dfrac{(-1)^k k!}{x^{k+1}} \right| &= (n+1)! e^x \displaystyle\int_x^{\infty} \dfrac{e^{-t}}{t^{n+2}} \mathrm{d}t \\
&< \dfrac{(n-1)!}{x^{n+2}} e^x \displaystyle\int_x^{\infty} e^{-t} \mathrm{d}t \\
&< \dfrac{(n+1)!}{x^{n+2}}.
\end{array}$$
Hence
$$e^x f(x) - \displaystyle\sum_{k=0}^n \dfrac{(-1)^k k!}{x^{k+1}} = \mathcal{O} \left( \dfrac{1}{x^{n+2}} \right) = \mathcal{O} \left( \dfrac{1}{x^{n+1}} \right),$$
so
$$e^x f(x) \sim \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^n n!}{x^{n+1}}$$
or as $x \rightarrow \infty$,
$$\displaystyle\int_x^{\infty} t^{-1}e^{-t} \mathrm{d}t \sim e^{-x} \displaystyle\sum_{n=0}^{\infty} \dfrac{(-1)^n n!}{x^{n+1}}.$$
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem6chapter3}
Let the Hermite polynomials $H_n(x)$ be defined by
$$\exp(2xt-t^2) = \displaystyle\sum_{n=0}^{\infty} \dfrac{H_n(x)t^n}{n!}$$
for all $x$ and $t$, as in Chapter 11. Also let the complementary error function $\mathrm{erfc \hspace{3pt}} x$ be defined by
$$\mathrm{erfc \hspace{3pt}}x = 1 - \mathrm{erf \hspace{3pt}}x = \dfrac{2}{\sqrt{\pi}} \displaystyle\int_x^{\infty} \exp(-\beta^2) \mathrm{d}\beta.$$
Apply Watson's lemma to the function $F(t)=\exp(2xt-t^2)$; obtain as $s \rightarrow \infty$,
$$\exp \left( x-\dfrac{1}{2}s \right)^2 \displaystyle\int_{\frac{1}{2}s-x}^{\infty} \exp(-\beta^2) \mathrm{d} \beta \sim \displaystyle\sum_{n=0}^{\infty} H_n(x) s^{-n-1}$$
and thus arrive at the result as $t \rightarrow 0^+$,
$$\dfrac{1}{2} t^{-1} \sqrt{\pi} \exp \left[ \left( \dfrac{1}{2}t^{-1} - x \right)^2 \right] \mathrm{erfc}\left( \dfrac{1}{2}t^{-1} - x \right) \sim \displaystyle\sum_{n=0}^{\infty} H_n(x)t^n.$$
\end{problem}
\begin{solution}
Because $\exp_t(n-1)=t^{n-1},$ and if
$$F(t) = \exp(2xt-t^2) = \displaystyle\sum_{n=0}^{\infty} \dfrac{H_n(x)}{n!} t^n,$$
we can write
$$F(t) = \displaystyle\sum_{n=1}^{\infty} \dfrac{H_{n-1}(x)}{(n-1)!} \exp_t(n-1)$$
so the first condition in Watson's Lemma is satisfied for any fixed $x$ with $r=1$, $a=1$, and any $\delta > 0$. Also,
$$F(t) = \exp(2xt-t^2) = e^{-t^2} e^{2xt} < 2e^{2xt}$$
for $t \geq 0$, so the second condition in Watson's Lemma is satisfied with $k=2$ (or anything $>1$) and $b=2x$. Thus, we get
$$\displaystyle\int_0^{\infty} e^{-st} F(t) \mathrm{d}t \sim \displaystyle\sum_{n=1}^{\infty} \dfrac{H_{n-1}(x) \Gamma(n)}{(n-1)!s^n}$$
as $s \rightarrow \infty$, or
$$\displaystyle\int_0^{\infty} \exp \left[-t^2+2 \left( x - \dfrac{1}{2}s \right)t \right]\mathrm{d}t \sim \displaystyle\sum_{n=0}^{\infty} H_n(x) s^{-n-1},$$
as $s \rightarrow \infty$. Completing the square in the exponent leads to
$$\exp \left[ x - \dfrac{1}{2}s \right] \displaystyle\int_0^{\infty} \exp \left[ - \left( t+\dfrac{1}{2}s - x \right)^2 \right] \mathrm{d}t \sim \displaystyle\sum_{n=0}^{\infty} H_n(x) s^{-n-1}$$
as $s \rightarrow \infty$, and if we let $\beta = t + \dfrac{1}{2}s - x$ we get
$$\exp \left[ \left( x - \dfrac{1}{2}s \right)^2 \right] \displaystyle\int_{\frac{1}{2}s - x}^{\infty} e^{-\beta^2} \mathrm{d} \beta \sim \displaystyle\sum_{n=0}^{\infty} H_n(x) s^{-n-1},$$
as $s \rightarrow \infty$.
Using the definition of $\mathrm{erfc}$, and then making the substitution $t = \dfrac{1}{s}$ (not the inverse Laplace transform) we get
$$\dfrac{\sqrt{\pi}}{2}\exp \left[ \left(x - \dfrac{1}{2} s \right)^2 \right] \mathrm{erfc} \left( \dfrac{1}{2}s - x \right) \sim \displaystyle\sum_{n=0}^{\infty} H_n(x) s^{-n-2},$$
as $s \rightarrow \infty$ or
$$\dfrac{\sqrt{\pi}}{2t} \exp \left[ \left( x - \dfrac{1}{2t} \right)^2 \right] \mathrm{erfc} \left( \dfrac{1}{2t} - x \right) \sim \displaystyle\sum_{n=0}^{\infty} H_n(x) t^n,$$
as $t \rightarrow 0^+$ as desired.
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem7chapter3}
Use integration by parts to show that if $\mathrm{Re}(\alpha) > 0$, and if $x$ is real and $x \rightarrow \infty$,
$$\displaystyle\int_x^{\infty} e^{-t}t^{-\alpha} \mathrm{d}t \sim x^{1 - \alpha} e^{-x} \displaystyle\sum_{n=0}^{\infty} \dfrac{(-1)^n (\alpha)_n}{x^{n+1}},$$
of which Problem \ref{problem5chapter3} is the special case $\alpha=1$.
\end{problem}
\begin{solution}
Integration by parts with $u=t^{-\alpha}$ and $\mathrm{d}v = e^{-t} \mathrm{d}t$ yields
$$\displaystyle\int_x^{\infty} e^{-t}t^{-\alpha} \mathrm{d}t = e^{-x} x^{-\alpha} - \alpha \displaystyle\int_x^{\infty} e^{-t} t^{-(\alpha+1)}\mathrm{d}t.$$
The same integration by parts with $\alpha$ replaced by $\alpha+1$ applied to the last integral gives
$$\displaystyle\int_x^{\infty} e^{-t} t^{-\alpha} \mathrm{d}t = e^{-x} x^{-\alpha} \left[ 1 - \dfrac{\alpha}{x} \right] + \alpha(\alpha+1) \displaystyle\int_x^{\infty} e^{-t} t^{-(\alpha+2)}\mathrm{d}t.$$
Continuing, after $n+1$ integrations by parts, we have
$$\displaystyle\int_x^{\infty} e^{-t} t^{-\alpha} \mathrm{d}t = e^{-x} x^{-\alpha+1} \displaystyle\sum_{k=0}^n \dfrac{(-1)^k (\alpha)_k}{x^{k+1}} + (-1)^{n+1} (\alpha)_{n+1} \displaystyle\int_x^{\infty} e^{-t} t^{-(\alpha+n+1)}\mathrm{d}t$$
or
$$e^x x^{\alpha-1} \displaystyle\int_x^{\infty} e^{-t}t^{-\alpha} \mathrm{d}t - \displaystyle\sum_{k=0}^n \dfrac{(-1)^k (\alpha)_k}{x^{k+1}} = e^x x^{\alpha-1}(-1)^n (\alpha)_{n+1} \displaystyle\int_x^{\infty}e^{-t}t^{-(\alpha+n+1)} \mathrm{d}t.$$
Thus, we have the desired asymptotic series if the right side of the last equation is $\mathcal{O} \left( \dfrac{1}{x^n}+1 \right)$ as $x \rightarrow \infty$. This is true because as $x \rightarrow \infty$,
\begin{eqnarray*}
\lefteqn{\left| e^x x^{\alpha-1} (-1)^n (\alpha)_{n+1} \displaystyle\int_x^{\infty} e^{-t} t^{-(\alpha+n+1)}\mathrm{d}t \right|} \\
& &\leq \left| \dfrac{e^x x^{\alpha-1} (\alpha)_{n+1}}{x^{\alpha+n+1}}\displaystyle\int_x^{\infty} e^{-t} \mathrm{d}t \right| \\
& &= \left| \dfrac{e^x (\alpha)_{n+1}}{x^{n+2}} e^{-x} \right| \\
& &= \dfrac{\left| (\alpha)_{n+1} \right|}{x^{n+2}} \\
& &= \mathcal{O} \left( \dfrac{1}{x^{n+1}} \right).
\end{eqnarray*}
\end{solution}