-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter20.tex
774 lines (479 loc) · 34.2 KB
/
chapter20.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
%%%%
%%
%%
%%%%
%%%% CHAPTER 20
%%%% CHAPTER 20
%%%%
%%
%%
%%%%
\section{Chapter 20 Solutions}
\begin{center}\hyperref[toc]{\^{}\^{}}\end{center}
\begin{center}\begin{tabular}{lllllllllllllllllllllllll}
\hyperref[problem1chapter20]{P1} & \hyperref[problem2chapter20]{P2} & \hyperref[problem3chapter20]{P3} & \hyperref[problem4chapter20]{P4} & \hyperref[problem5chapter20]{P5} & \hyperref[problem6chapter20]{P6} & \hyperref[problem7chapter20]{P7} & \hyperref[problem8chapter20]{P8} & \hyperref[problem9chapter20]{P9} & \hyperref[problem10chapter20]{P10} & \hyperref[problem11chapter20]{P11} & \hyperref[problem12chapter20]{P12}
\end{tabular}\end{center}
\setcounter{problem}{0}
\setcounter{solution}{0}
\begin{problem}\label{problem1chapter20}
Show that $\theta_1'=2q^{\frac{1}{4}}G^3.$
\end{problem}
\begin{solution}
We know that
$$\theta_1' = 2 p^{\frac{1}{4}} G \displaystyle\prod_{n=1}^{\infty} (1 - q^{2n})^2$$
and that
$$G = \displaystyle\prod_{n=1}^{\infty} (1-q^{2n}).$$
Hence
$$\theta_1' = 2q^{\frac{1}{4}} G^3.$$
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem2chapter20}
The following formulas are drawn from Section 168. Derive $(9)$ and $(10)$:
$$(8) \hspace{30pt} \theta_4^2\theta_1^2(z) + \theta_3^2 \theta_2^2(z) = \theta_2^2\theta_3^2(z),$$
$$(9) \hspace{30pt} \theta_3^2 \theta_1^2(z) + \theta_4^2\theta_2^2(z) = \theta_2^2\theta_4^2(z),$$
$$(10) \hspace{30pt} \theta_2^2\theta_1^2(z) + \theta_4^2\theta_3^2(z) = \theta_3^2\theta_4^2(z),$$
$$(11) \hspace{30pt} \theta_2^2\theta_2^2(z) + \theta_4^2 \theta_4^2(z) = \theta_3^2\theta_3^2(z).$$
\end{problem}
\begin{solution}
We are given
$$(8) \hspace{30pt} \theta_4^2\theta_1^2(z) + \theta_3^2 \theta_2^2(z) = \theta_2^2\theta_3^2(z).$$
Use the basic table with $z || z + \dfrac{\pi}{2}$ to obtain
$$\theta_4^2 \theta_2^2(z) + \theta_3^2 \theta_1^2(z) = \theta_2^2 \theta_4^2(z)$$
or
$$(9) \hspace{30pt} \theta_3^2 \theta_1^2(z) + \theta_4^2\theta_2^2(z) = \theta_2^2\theta_4^2(z).$$
In $(9)$ use the basic table with $z || z + \dfrac{1}{2} \pi \tau$ to get
$$-\theta_3^2 q^{-\frac{1}{2}} e^{-2iz} \theta_4^2(z) + \theta_4^2 q^{-\frac{1}{2}} e^{-2it} \theta_3^2(z) = -\theta_2^2 q^{-\frac{1}{2}} e^{-2iz} \theta_1^2(z)$$
or
$$\theta_3^2 \theta_4^2(z) - \theta_4^2\theta_3^2(z) = \theta_2^2 \theta_1^2(z)$$
from which we get
$$(10) \hspace{30pt} \theta_2^2 \theta_1^2(z) + \theta_4^2 \theta_3^2(z) = \theta_3^2 \theta_4^2(z).$$
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem3chapter20}
Use $(8)$ and $(10)$ of Exercise~\ref{problem2chapter20} and the equation $\theta_2^4+\theta_4^4=\theta_3^4$ to show that
$$\theta_1^4(z) + \theta_3^4(z)=\theta_2^4(z)+\theta_4^4(z).$$
\end{problem}
\begin{solution}
We may write $(8)$ and $(10)$ of Exercise~\ref{problem2chapter20} in the form
$$(8) \hspace{30pt} \theta_4^2 \theta_1^2(z) - \theta_2^2 \theta_3^2(z) = -\theta_3^2 \theta_2^2(z),$$
$$(10) \hspace{30pt} \theta_2^2 \theta_1^2(z) + \theta_4^2 \theta_3^2(z) = \theta_3^2 \theta_4^2(z).$$
We square each member and add to obtain
$$(\theta_4^4 + \theta_2^4) [\theta_1^4(z) + \theta_3^4(z)] = \theta_3^4[\theta_2^4(z) + \theta_4^4(z)].$$
But
$$\theta_2^4 + \theta_3^4 = \theta_3^4,$$
so we get
$$\theta_1^4(z) + \theta_3^4(z) = \theta_2^4(z) + \theta_4^4(z).$$
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem4chapter20}
The first of the following relations was derived in Section 169. Obtain the other three by using appropriate changes of variable and the basic table, page 319. For example, change $x$ to $\left(x + \dfrac{1}{2} \pi \right),$ or $x$ to $\left( x + \dfrac{1}{2} \pi \tau \right),$ etc.
$$\theta_2^2\theta_1(x+y)\theta_1(x-y) = \theta_1^2(x)\theta_2^2(y) - \theta_2^2(x)\theta_1^2(y),$$
$$\theta_2^2\theta_2(x+y)\theta_2(x-y) = \theta_2^2(x)\theta_2^2(y) - \theta_1^2(x) \theta_1^2(y),$$
$$\theta_2^2\theta_3(x+y)\theta_3(x-y) = \theta_3^2(x)\theta_2^2(y) + \theta_4^2(x) \theta_1^2(y),$$
$$\theta_2^2\theta_4(x+y)\theta_4(x-y) = \theta_4^2(x)\theta_2^2(y) + \theta_3^2(x) \theta_1^2(y).$$
\end{problem}
\begin{solution}
We are given from Section~169 that
$$(A) \hspace{30pt} \theta_2^2 \theta_1(x+y) \theta_1(x-y) = \theta_1^2(x) \theta_2^2(y) - \theta_2^2(x) \theta_1^2(y).$$
In $(A)$ change $x$ to $\left(x + \dfrac{\pi}{2} \right)$ and use the basic table to get
$$\theta_2^2 \theta_2(x+y) \theta_2(x-y) = \theta_2^2(x) \theta_2^2(y) - \theta_1^2(x) \theta_1^2(y).$$
Now in last equation above change $x$ to $x + \dfrac{\pi \tau}{2}$ to obtain
$$\theta_2^2 q^{-\frac{1}{2}} e^{-2ix} \theta_2(x+y) \theta_3(x-y) = q^{-\frac{1}{2}} e^{-2ix} \theta_3^2(x) \theta_2^2(y) + q^{-\frac{1}{2}} e^{-2ix} \theta_4^2(x) \theta_1^2(y),$$
or
$$\theta_2^2 \theta_3(x+y) \theta_3(x-y) = \theta_3^2(x) \theta_2^2(y) + \theta_4^2(x) \theta_1^2(y).$$
In last equation above change $x$ to $\left( x + \dfrac{\pi}{2} \right)$ to arrive at
$$\theta_2^2 \theta_4(x+y)\theta_4(x-y) = \theta_4^2(x) \theta_2^2(y) + \theta_3^2(x) \theta_1^2(y).$$
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem5chapter20}
Use the identities in Exercise~\ref{problem2chapter20} and the relation $\theta_2^4 + \theta_4^4=\theta_3^4$ to transform the first relation of Exercise~\ref{problem4chapter20} into the first relation below. Then obtain the remaining three relations with the aid of the basic table, page 319.
$$\theta_2^2\theta_1(x+y)\theta_1(x-y)=\theta_4^2(x)\theta_3^2(y)-\theta_3^2(x)\theta_4^2(y),$$
$$\theta_2^2\theta_2(x+y)\theta_2(x-y)=\theta_3^2(x)\theta_3^2(y)-\theta_4^2(x)\theta_4^2(y),$$
$$\theta_2^2\theta_3(x+y)\theta_3(x-y)=\theta_2^2(x)\theta_3^2(y)+\theta_1^2(x)\theta_4^2(y),$$
$$\theta_2^2\theta_4(x+y)\theta_4(x-y)=\theta_1^2(x)\theta_3^2(y)+\theta_2^2(x)\theta_4^2(y).$$
\end{problem}
\begin{solution}
From Exercise~\ref{problem4chapter20} we obtain
$$\theta_2^2 \theta_1(x+y) \theta_1(x-y) = \theta_1^2(x) \theta_2^2(y) - \theta_2^2(x) \theta_1^2(y).$$
From $(10)$ and $(11)$ of Exercise~\ref{problem2chapter20} we get
$$\theta_1^2(x) = \theta_2^{-2} \left[ \theta_3^2 \theta_4^2(x) - \theta_4^2 \theta_3^2(x) \right]$$
$$\theta_2^2(y) = \theta_2^{-2} \left[ \theta_3^2 \theta_3^2(y) - \theta_4^2 \theta_4^2(y) \right].$$
Hence we obtain
$$\begin{array}{ll}
\theta_2^2 \theta_1(x+y) \theta_1(x-y) &= \theta_2^{-4} \left[ \theta_3^4 \theta_4^2(x) \theta_3^2(y) + \theta_4^4 \theta_3^2 (x) \theta_4^2(y) - \theta_3^2 \theta_4^4 \left\{ \theta_3^2(x) \theta_3^2(y) + \theta_4^2(x) \theta_4^2(y) \right\} \right] \\
&- \theta_2^{-2} \left[ \theta_3^4 \theta_4^2(y) \theta_3^2(x) + \theta_4^4 \theta_3^2(y) \theta_4^2(x) - \theta_2^2 \theta_4^2 \left\{ \theta_3^2(y) \theta_3^2(x) + \theta_4^2(y) \theta_4^2(x) \right\} \right] \\
&= \theta_2^{-4} \left[ (\theta_3^4 - \theta_4^4) \{ \theta_4^2(x) \theta_3^2(y) - \theta_3^2(x) \theta_4^2(y) \} \right].
\end{array}$$
Now $\theta_3^4 - \theta_4^4 = \theta_2^4$ so that we may conclude that
$$(A) \hspace{30pt} \theta_2^2 \theta_1(x+y) \theta_1(x-y) = \theta_4^2(x) \theta_3^2(y) - \theta_3^2(y) - \theta_3^2(x) \theta_4^2(y).$$
We shall now transform $(A)$ by means of the basic table. Note that $(A)$ is the first of the required results in Exercise~\ref{problem5chapter20}.
In $(A)$ replace $x$ by $\left( x + \dfrac{\pi}{2} \right)$ to get
$$(B) \hspace{30pt} \theta_2^2 \theta_2(x+y) \theta_2(x-y) = \theta_3^2(x) \theta_3^2(y) - \theta_4^2(x) \theta_4^2(y).$$
In $(B)$ replace $x$ by $\left( x + \dfrac{\pi \tau}{2} \right)$ to obtain
$$q^{-\frac{1}{2}} e^{-2ix} \theta_2^2 \theta_3(x+y) \theta_3(x-y) = q^{-\frac{1}{2}} e^{-2ix} \theta_2^2(x) \theta_3^2(y) + q^{-\frac{1}{2}} e^{-2ix} \theta_1^2(x) \theta_4^2(y),$$
or
$$(C) \hspace{30pt} \theta_2^2\theta_3(x+y) \theta_3(x-y) = \theta_2^2(x) \theta_3^2(y) + \theta_1^2(x) \theta_4^2(y).$$
In $(C)$ replace $x$ by $\left( x + \dfrac{\pi}{2} \right)$ to arrive at
$$(D) \hspace{30pt} \theta_2^2 \theta_4(x+y) \theta_4(x-y) = \theta_1^2(x) \theta_3^2(y) + \theta_2^2(x) \theta_4^2(y).$$
Equations $(A), (B), (C), (D)$ are those required.
\end{solution}
%%%%
%%
%%
%%%%
%%%%
%%
%%
%%%%
\begin{problem}\label{problem6chapter20}
Use equation $(10)$ of Exercise~\ref{problem2chapter20} and the first relation of Exercise~\ref{problem5chapter20} to obtain the first relation below; then use the basic table to get the remaining three results.
$$\theta_3^2\theta_1(x+y)\theta_1(x-y)=\theta_1^2(x)\theta_3^2(y)-\theta_3^2(x)\theta_1^2(y),$$
$$\theta_3^2\theta_2(x+y)\theta_2(x-y)\theta_2^2(x)\theta_3^2(y) -\theta_4^2(x)\theta_1^2(y),$$
$$\theta_3^2\theta_3(x+y)\theta_3(x-y)=\theta_3^2(x)\theta_3^2(y)+\theta_1^2(x)\theta_1^2(y),$$
$$\theta_3^2\theta_4(x+y)\theta_4(x-y)=\theta_4^2(x)\theta_3^2(y)+\theta_2^2(x)\theta_1^2(y).$$
\end{problem}
\begin{solution}
From Exercise~\ref{problem5chapter20} we use
$$\theta_2^2 \theta_1(x+y) \theta_1(x-y) = \theta_4^2(x) \theta_3^2(y) - \theta_3^2(x) \theta_4^2(y).$$
From Exercise~\ref{problem2chapter20} we use equation $(10)$ in the form
$$(10) \hspace{30pt} \theta_4^2(x) = \theta_3^{-2} [\theta_2^2 \theta_1^2(x) + \theta_4^2 \theta_3^2(x)].$$
Thus we obtain
$$\theta_2^2 \theta_1(x+y)\theta_1(x-y) = \theta_3^{-2} [\theta_2^2 \theta_1^2(x) \theta_3^2(y) + \theta_4^2 \theta_3^2(x) \theta_3^2(y) - \theta_2^2 \theta_3^2 (x) \theta_1^2(y) - \theta_4^2 \theta_3^2(x) \theta_3^2(x)].$$
Two terms drop out and we are left with
$$(A) \hspace{30pt} \theta_3^2 \theta_1(x+y) \theta_1(x-y) = \theta_1^2(x) \theta_3^2(y) - \theta_3^2(x) \theta_1^2(y),$$
which was desired.
In $(A)$ replace $x$ by $\left( x + \dfrac{\pi}{2} \right)$ to get
$$(B) \hspace{30pt} \theta_3^2 \theta_2(x+y) \theta_2(x-y) = \theta_2^2(x) \theta_3^2(y) - \theta_4^2(x) \theta_1^2(y).$$
In $(B)$ replace $x$ by $\left( x + \dfrac{\pi \tau}{2} \right)$ to get
$$(C) \theta_3^2 \theta_3(x+y) \theta_3(x-y) = \theta_3^2(x) \theta_3^2(y) + \theta_1^2(x) \theta_1^2(y),$$
from which we have removed the common factor $q^{-\frac{1}{2}} e^{-2ix}$.
In $(C)$ replace $x$ by $\left( x + \dfrac{\pi}{2} \right)$ to get
$$(D) \hspace{30pt} \theta_3^2 \theta_4(x+y) \theta_4(x-y) = \theta_4^2(x) \theta_3^2(y) + \theta_2^2(x) \theta_1^2(y).$$
Equations $(A), (B), (C), (D)$ are the required ones.
\end{solution}
%%%%
%%
%%
%%%%
%%%%
%%
%%
%%%%
\begin{problem}\label{problem7chapter20}
Use the first relation of Exercise~\ref{problem6chapter20} and the identities from Exercise~\ref{problem2chapter20} to obtain the frist relation below. Derive the other three relations from the first one.
$$\theta_3^2\theta_1(x+y)\theta_1(x-y) = \theta_4^2(x)\theta_2^2(y)-\theta_2^2(x)\theta_4^2(y),$$
$$\theta_3^2\theta_2(x+y)\theta_2(x-y)=\theta_3^2(x)\theta_2^2(y)-\theta_1^2(x)\theta_4^2(y),$$
$$\theta_3^2\theta_3(x+y)\theta_3(x-y)=\theta_2^2(x)\theta_2^2(y)+\theta_4^2(x)\theta_4^2(y),$$
$$\theta_3^2\theta_4(x+y)\theta_4(x-y)=\theta_1^2(x)\theta_2^2(y)+\theta_3^2(x)\theta_4^2(y).$$
\end{problem}
\begin{solution}
From $(9)$ and $(11)$ of Exercise~\ref{problem2chapter20} we may write
$$\theta_1^2(x) = \theta_3^{-2} [\theta_2^2 \theta_4^2(x) - \theta_4^2 \theta_2^2(x)]$$
and
$$\theta_3^2(y) = \theta_3^{-2} [\theta_2^2 \theta_2^2(y) + \theta_4^2 \theta_4^2(y)],$$
which we substitute into equation $(A)$ of Exercise~\ref{problem5chapter20} above.
The result is
$$\begin{array}{ll}
\theta_3^2 \theta_1(x+y) \theta_1(x-y) &= \theta_3^{-4} [\theta_2^4 \theta_4^2(x) \theta_2^2(y) - \theta_4^4 \theta_2^2 (x) \theta_4^2(y) + \theta_2^2 \theta_4^2 \{ \theta_4^2(x) \theta_4^2(y) - \theta_2^2 (x) \theta_2^2(y) \} ] \\
&- \theta_3^{-4} [\theta_2^4 \theta_4^2(y) \theta_2^2(x) -\theta_4^4 \theta_2^2(y) \theta_4^2(x) + \theta_2^2\theta_4^2\{\theta_4^2(y) \theta_4^2(x) - \theta_2^2(y) \theta_2^2(x) \} ].
\end{array}$$
We thus obtain
$$\theta_3^2 \theta_1(x+y) \theta_1(x-y) = \theta_3^{-4} [(\theta_2^4+\theta_4^4) \{ \theta_4^2(x) \theta_2^2(y) - \theta_2^2(x) \theta_4^2(x) \theta_4^2(y) \} ].$$
Since $\theta_2^4 + \theta_4^4 = \theta_3^4$, we arrive at the desired result
$$(A) \hspace{30pt} \theta_3^2\theta_1(x+y) \theta_1(x-y) = \theta_4^2(x) \theta_2^2(y) - \theta_2^2(x) \theta_4^2(y).$$
In $(A)$ replace $x$ by $\left( x + \dfrac{\pi}{2} \right)$ to obtain
$$(B) \hspace{30pt} \theta_3^2 \theta_2(x+y) \theta_2(x-y) = \theta_3^2(x) \theta_2^2(y) -\theta_1^2(x) \theta_4^2(y).$$
In $(B)$ replace $x$ by $\left( x + \dfrac{\pi \tau}{2} \right)$ and remove the factor $q^{-\frac{1}{2}} e^{-2ix}$ to get
$$(C) \hspace{30pt} \theta_3^2 \theta_3(x+y) \theta_3(x-y) = \theta_2^2(x) \theta_2^2(y) + \theta_4^2(x) \theta_4^2(y).$$
In $(C)$ replace $x$ by $\left( x + \dfrac{\pi}{2} \right)$ to obtain the formula of the requires results:
$$(C) \hspace{30pt} \theta_3^2 \theta_4(x+y) \theta_4(x-y) = \theta_1^2(x) \theta_2^2(y) + \theta_3^2(x) \theta_4^2(y).$$
\end{solution}
%%%%
%%
%%
%%%%
%%%%
%%
%%
%%%%
\begin{problem}\label{problem8chapter20}
Use equation $(10)$ of Exercise~\ref{problem2chapter20} and the first relation of Exercise~\ref{problem6chapter20} to obtain the first relation below. Derive the others with the aid of the basic table, page 319.
$$\theta_4^2\theta_1(x+y)\theta_1(x-y) = \theta_1^2(x)\theta_4^2(y)-\theta_4^2(x)\theta_1^2(y),$$
$$\theta_4^2\theta_2(x+y)\theta_2(x-y)=\theta_2^2(x)\theta_4^2(y)-\theta_3^2(x)\theta_1^2(y),$$
$$\theta_4^2\theta_3(x+y)\theta_3(x-y)=\theta_3^2(x)\theta_4^2(y) - \theta_2^2(x)\theta_1^2(y),$$
$$\theta_4^2\theta_4(x+y)\theta_4(x-y)=\theta_4^2(x)\theta_4^2(y)-\theta_1^2(x)\theta_1^2(y).$$
\end{problem}
\begin{solution}
From $(10)$ of Exercise~\ref{problem2chapter20} we g et
$$\theta_3^2(y) = \theta_4^{-2} [\theta_3^2 \theta_4^2(y) - \theta_2^2 \theta_1^2(y)]$$
and a similar result in $x$. The first equation in Exercise~\ref{problem6chapter20} is
$$\theta_3^2 \theta_1(x+y) \theta_1(x-y) = \theta_1^2(x) \theta_3^2(y) - \theta_3^2(x) \theta_1^2(y).$$
Then two applications of $(10)$ yield
$$\theta_3^2 \theta_1(x+y) \theta_1(x-y) = \theta_4^{-2} [\theta_3^2 \theta_1^2(x) \theta_4^2(y) - \theta_2^2 \theta_1^2(x) \theta_1^2(y)] - \theta_4^{-2} [\theta_3^2 \theta_4^2(x) \theta_1^2(y) - \theta_2^2 \theta_1^2(x) \theta_1^2(y) ]$$
In the above, two terms drop out and $\theta_3^2$ cancels out to yield
$$(A) \hspace{30pt} \theta_4^2 \theta_1(x+y) \theta_1(x-y) = \theta_1^2(x) \theta_4^2(y) - \theta_4^2(x) \theta_1^2(y).$$
In $(A)$ replace $x$ by $\left( x + \dfrac{\pi}{2} \right)$ and see the basic table to get
$$(B) \hspace{30pt} \theta_4^2\theta_2(x+y) \theta_2(x-y) = \theta_2^2(x) \theta_4^2(y) - \theta_3^2(x) \theta_1^2(y).$$
In $(B)$ replace $x$ by $\left( x + \dfrac{\pi \tau}{2} \right)$ and remove the common factor $q^{-\frac{1}{2}} e^{-2ix}$ to obtain
$$(C) \hspace{30pt} \theta_4^2 \theta_3(x+y) \theta_3(x-y) = \theta_3^2(x) \theta_4^2(y) - \theta_2^2(x) \theta_1^2(y).$$
In $(C)$ replace $x$ by $\left( x + \dfrac{\pi}{2} \right)$ and thus arrive at
$$(D) \hspace{30pt} \theta_4^2 \theta_4(x+y) \theta_4(x-y) = \theta_4^2(x) \theta_4^2(y) - \theta_1^2(x) \theta_1^2(y).$$
\end{solution}
%%%%
%%
%%
%%%%
%%%%
%%
%%
%%%%
\begin{problem}\label{problem9chapter20}
The first relation below was derived in Section 169. Obtain the other three.
$$\theta_4^2\theta_1(x+y)\theta_1(x-y)=\theta_3^2(x)\theta_2^2(y)-\theta_2^2(x)\theta_3^2(y),$$
$$\theta_4^2\theta_2(x+y)\theta_2(x-y)=\theta_4^2(x)\theta_2^2(y)-\theta_1^2(x)\theta_3^2(y),$$
$$\theta_4^2\theta_3(x+y)\theta_3(x-y) = \theta_4^2(x)\theta_3^2(y) -\theta_1^2(x)\theta_2^2(y),$$
$$\theta_4^2\theta_4(x+y)\theta_4(x-y)=\theta_3^2(x)\theta_3^2(y)-\theta_2^2(x)\theta_2^2(y).$$
\end{problem}
\begin{solution}
From Section 169, equation $(7)$, page 371, we obtain
$$(A) \hspace{30pt} \theta_4^2 \theta_1(x+y) \theta_1(x-y) = \theta_3^2(x) \theta_2^2(y) - \theta_2^2(x) \theta_3^2(y).$$
In $(A)$ replace $x$ by $\left( x + \dfrac{\pi}{2} \right)$ to get
$$(B) \hspace{30pt} \theta_4^2 \theta_2(x+y) \theta_2(x-y) = \theta_4^2(x) \theta_2^2(y) - \theta_1^2(x) \theta_3^2(y).$$
In $(B)$ replace $x$ by $\left( x + \dfrac{\pi \tau}{2} \right)$ and remove the factor $q^{-\frac{1}{2}} e^{-2ix}$ to arrive at
$$(C) \hspace{30pt} \theta_4^2 \theta_3(x+y) \theta_2(x-y) = \theta_4^2(x) \theta_3^2(y) - \theta_1^2(x) \theta_2^2(y).$$
In $(C)$ replace $x$ by $\left( x + \dfrac{\pi}{2} \right)$ to obtain
$$(D) \hspace{30pt} \theta_4^2 \theta_4(x+y) \theta_4(x-y) = \theta_3^2(x) \theta_3^2(y) - \theta_2^2(x) \theta_2^2(y).$$
\end{solution}
%%%%
%%
%%
%%%%
%%%%
%%
%%
%%%%
\begin{problem}\label{problem10chapter20}
Use the method of Section 169 together with the basic table, page 319, to derive the following results, one of which was obtain in Section 169.
$$\theta_3\theta_4\theta_1(x+y)\theta_2(x-y)=\theta_1(x)\theta_2(x)\theta_3(y)\theta_4(y)+\theta_1(y)\theta_2(y)\theta_3(x)\theta_4(x),$$
$$\theta_2\theta_4\theta_1(x+y)\theta_3(x-y)=\theta_1(x)\theta_2(y)\theta_3(x)\theta_4(y)+\theta_1(y)\theta_2(x)\theta_3(y)\theta_4(x),$$
$$\theta_2\theta_3\theta_3(x+y)\theta_4(x-y)=\theta_1(x)\theta_2(y)\theta_3(y)\theta_4(x)+\theta_1(y)\theta_2(x)\theta_3(x)\theta_4(y),$$
$$\theta_2\theta_3\theta_2(x+y)\theta_3(x-y)=\theta_2(x)\theta_3(x)\theta_2(y)\theta_3(y)-\theta_1(x)\theta_4(x)\theta_1(y)\theta_4(y),$$
$$\theta_2\theta_4\theta_2(x+y)\theta_4(x-y)=\theta_2(x)\theta_4(x)\theta_2(y)\theta_4(x)-\theta_1(x)\theta_3(x)\theta_1(y)\theta_3(y),$$
$$\theta_3\theta_4\theta_3(x+y)\theta_4(x-y)=\theta_3(x)\theta_4(x)\theta_3(y)\theta_4(y)-\theta_1(x)\theta_2(x)\theta_1(y)\theta_2(y).$$
\end{problem}
\begin{solution}
For brevity, since we know how to discover such formulas, let us consider the function
$$\phi_1(x) = \dfrac{\theta_1(x) \theta_2(x) \theta_3(y) \theta_4(y) + \theta_1(y) \theta_2(y) \theta_3(x) \theta_4(y)}{\theta_1(x+y) \theta_2(x-y)}.$$
we shall show that $\phi_1(x)$ is an elliptic function of order less than two, and then obtain its constant value.
Let $N_1(x) =$ the numerator of $\phi_1(t)$ and $D_1(x)$ be the denominator of $\phi_1(x)$. Then at once the basic table yields
$$N_1(x+\pi \tau) = \theta_2(x) \theta_1(x) \theta_3(y) \theta_4(y) + \theta_1(y) \theta_2(y) \theta_4(x) \theta_3(x) = N_1(x)$$
and
$$D_1(x+\pi \tau) = -\theta_1(x+y)[-\theta_2(x-y)]=D_1(x).$$
Hence
$$\phi_1(x+\pi \tau) = \phi_1(x).$$
The periods $\pi$ and $\pi \tau$ are also those of the zeros of the four theta functions. Hence the only poles of $\phi_1(x)$ in a cell are simple ones at $x=y=0$ and $x-y =\dfrac{\pi}{2}$. But $x=-y$ is also a zero of the numerator because
$$N_1(-y) = -\theta_1(y)\theta_2(x)\theta_3(y)\theta_4(y)+\theta_1(y) \theta_2(y)\theta_3(y)\theta_4(y)=0.$$
Hence $\phi_1(x)$ is an elliptic function order less than two and is constant. Now
$$\phi_1(0) = \dfrac{0 + \theta_1(y) \theta_2(y) \theta_3 \theta_4}{\theta_1(y) \theta_2(-y)} = \theta_3 \theta_4,$$
since $\theta_2(y)$ is an even function. Thus we obtain the first of the derived relations,
$$(A) \hspace{30pt} \theta_3\theta_4\theta_1(x+y) \theta_2(x-y) = \theta_1(x) \theta_2(x) \theta_3(y) \theta_4(y) + \theta_1(y) \theta_2(y) \theta_3(x) \theta_4(x).$$
Next let us consider
$$\phi_2(x) = \dfrac{\theta_1(x) \theta_2(y) \theta_3(x) \theta_4(y) + \theta_1(y) \theta_2(x) \theta_3(y) \theta_4(x)}{\theta_1(x+y) \theta_3(x-y)}.$$
Let as usual the numerator be $N_2(x)$, the denominator $D_2(x).$ Then
$$N_2(x+\pi) = \theta_1(x) \theta_2(y) \theta_3(x) \theta_4(y) - \theta_1(y) \theta_2(x) \theta_3(x) \theta_4(x),$$
$$N_2(x+\pi) = -N-2(x).$$
Also
$$D_2(x+\pi) = -\theta_1(x+y) \theta_3(x-y) = -D_2(x+\pi).$$
Hence
$$\theta_2(x+\pi) = \theta_2(x).$$
Next
$$N_2(x+\pi \tau) = -q^{-2} e^{-4ix} N_2(x)$$
and
$$D_2(x+ \pi \tau) = -q^{-2} e^{-2i(x+y)} e^{-2i(x-y)} D_2(x) = -q^{-2} e^{-4ix} D_2(x).$$
Hence also
$$\phi_2(x+\pi \tau) = \phi_2(x).$$
In a cell, with periods $\pi, \pi \tau, D_2(x)$ has simple zeros at $x+y=0$ and $x-y = \dfrac{\pi}{2} + \dfrac{\pi \tau}{2}$. But, for $x= -y$,
$$N_2(-y) = -\theta_1(y) \theta_2(y) \theta_3(y) \theta_4(y) + \theta_1(y) \theta_2(y) \theta_3(y) \theta_4(y)=0.$$
Therefore $\phi_2(x)$ is an elliptic function of order less than two. The constant value of $\phi_2(x)$ is
$$\phi_2(0) = \dfrac{0 + \theta_1(y)\theta_3(y)\theta_4}{\theta_1(y) \theta_3(-y)} = \theta_2 \theta_4.$$
We may now conclude the validity of the equation
$$(B) \hspace{30pt} \theta_2 \theta_4 \theta_1(x+y) \theta_3(x-y) = \theta_1(y) \theta_2(y) \theta_3(x) \theta_4(y) + \theta_1(y) \theta_2(x) \theta_3(y) \theta_4(x).$$
From Section~169 we quote
$$(C) \hspace{30pt} \theta_2\theta_3\theta_1(x+y)\theta_4(x-y) = \theta_1(x) \theta_2(y) \theta_3(y) \theta_4(x) + \theta_1(y) \theta_2(x) \theta_3(x) \theta_4(y).$$
Equations $(A), (B),$ and $(C)$ are the first three of our desired results. In $(C)$ replace $x$ by $\left( x + \dfrac{\pi}{2} \right)$ to get
$$(D) \hspace{30pt} \theta_2 \theta_3 \theta_2(x+y) \theta_3(x-y) = \theta_2(x) \theta_2(y) \theta_3(y) \theta_3(x) - \theta_1(y) \theta_1(x) \theta_4(x) \theta_4(y),$$
which is the fourth equation, slightly rewritten, of the desired results. In $(B)$ replace $x$ by $\left( x + \dfrac{\pi}{2} \right)$ to find that
$$(E) \hspace{30pt} \theta_2 \theta_4 \theta_2(x+y) \theta_4(x-y) = \theta_2(x) \theta_2(y) \theta_4(x) \theta_4(y) - \theta_1(y) \theta_1(x) \theta_3(y) \theta_3(x),$$
which is a rewritten form of a desired result. Finally, turn to $(A)$ and replace $x$ by $\left( x + \dfrac{\pi \tau}{2} \right)$ to get
\begin{eqnarray*}
\lefteqn{\theta_3\theta_4 iq^{-\frac{1}{2}}e^{-i(x+y)}e^{-i(x-y)} \theta_4(x+y) \theta_3(x-y)} \\
&& = i q^{-\frac{1}{2}} e^{-2ix} \theta_4(x) \theta_3(x) \theta_3(y) \theta_4(y) + iq^{-\frac{1}{2}} e^{-2ix} \theta_1(y) \theta_2(y) \theta_2(x) \theta_1(x),
\end{eqnarray*}
or
$$\theta_3 \theta_4 \theta_4(x+y) \theta_3(x-y) = \theta_3(x) \theta_4(x) \theta_3(y) \theta_4(y) + \theta_1(x) \theta_2(x) \theta_1(y) \theta_2(y).$$
Now change $y$ to $(-y)$ to arrive at the desired result
$$(F) \hspace{30pt} \theta_3 \theta_4 \theta_3(x+y) \theta_4(x-y) = \theta_4(x) \theta_4(x) \theta_3(y) \theta_4(y) - \theta_1(x) \theta_2(x) \theta_1(y) \theta-2(y).$$
\end{solution}
%%%%
%%
%%
%%%%
%%%%
%%
%%
%%%%
\begin{problem}\label{problem11chapter20}
Use the results in Exercises~\ref{problem4chapter20}-\ref{problem10chapter20} above to show that
$$\theta_2^3\theta_2(2x)=\theta_2^4(x)-\theta_1^4(x)=\theta_3^4(x)-\theta_4^4(x),$$
$$\theta_3^3\theta_3(2x) = \theta_1^4(x) + \theta_3^4(x) = \theta_2^4(x) + \theta_4^4(x),$$
$$\theta_4^3\theta_4(2x) = \theta_4^4(x) - \theta_1^4(x) = \theta_3^4(x) - \theta_2^4(x),$$
$$\theta_3^2 \theta_2 \theta_2(2x) = \theta_2^2(x) \theta_3^2(x) - \theta_1^2(x) \theta_4^2(x),$$
$$\theta_4^2\theta_2 \theta_2(2x) = \theta_2^2(x) \theta_4^2(x) - \theta_1^2(x) \theta_3^2(x),$$
$$\theta_2^2\theta_3\theta_3(2x) = \theta_2^2(x) \theta_3^2(x) + \theta_1^2(x) \theta_4^2(x),$$
$$\theta_4^2\theta_3\theta_3(2x) = \theta_3^2(x) \theta_4^2(x) - \theta_1^2(x) \theta_2^2(x),$$
$$\theta_2^2 \theta_4 \theta_4(2x) = \theta_1^2(x) \theta_3^2(x) + \theta_2^2(x) \theta_4^2(x).$$
$$\theta_3^2\theta_4 \theta_4(2x) = \theta_1^2(x) \theta_2^2(x) + \theta_3^2(x) \theta_4^2(x).$$
\end{problem}
\begin{solution}
We shall use $y=x$ in various equations of Exercises~\ref{problem4chapter20}-\ref{problem10chapter20}. From Exercise~\ref{problem4chapter20}, second equation, we get
$$\theta_2^2 \theta_2(2x) = \theta_2^4(x) - \theta_1^4(x).$$
From Exercise~\ref{problem4chapter20} third equation, we get
$$\theta_2^2 \theta_3 \theta_3(2x) = \theta_2^2(x) \theta_3^2(x) + \theta_1^2(x) \theta_4^2(x).$$
From Exercise~\ref{problem4chapter20}, fourth equation, we get
$$\theta_2^2 \theta_4 \theta_4(2x) = \theta_2^2(x) \theta_4^2(x) + \theta_1^2(x) \theta_3^2(x).$$
From Exercise~\ref{problem5chapter20}, equations 1,2,3 in order, we obtain
$$\theta_2^3 \theta_2(2x) = \theta_3^4(x) - \theta_4^4(x),$$
$$\theta_2^2\theta_3\theta_3(2x) = \theta_2^2(x) \theta_3^2(x) - \theta_1^2(x) \theta_4^2(x),$$
$$\theta_2^2 \theta_4 \theta_4(2x) = \theta_1^2(x) \theta_3^2(x) + \theta_2^2(x) \theta_4^2(x).$$
Next from Exercise~\ref{problem6chapter20}, equations 2,3,4, we get
$$\theta_2\theta_3^2\theta_2(2x) = \theta_2^2(x) \theta_3^2(x) - \theta_1^2(x) \theta_4^2(x),$$
$$\theta_3^3\theta_3(2x) = \theta_3^4(x) + \theta_1^4(x),$$
$$\theta_3^2 \theta_4 \theta_4(2x) = \theta_3^2(x) \theta_4^2(x) + \theta_1^2(x) \theta_2^2(x).$$
From equations 2,3,4 of Exercise~\ref{problem7chapter20} we obtain
$$\theta_2\theta_3^2 \theta_2(2x) = \theta_2^2(x) \theta_3^2(x) - \theta_1^2(x) \theta_4^2(x),$$
$$\theta_3^3 \theta_3(2x) = \theta_2^4(x) + \theta_4^4(x),$$
$$\theta_3^2 \theta_4 \theta_4(2x) = \theta_1^2(x) \theta_2^2(x) + \theta_3^2(x) \theta_4^2(x).$$
From equations 2,3,4 of Exercise~\ref{problem8chapter20} we get
$$\theta_2 \theta_4^2 \theta_2(2x) = \theta_2^2(x) \theta_4^2(x) - \theta_1^(x) \theta_3^2(x),$$
$$\theta_3 \theta_4^2 \theta_3(2x) = \theta_3^2(x) \theta_4^2(x) - \theta_1^2(x) \theta_2^2(x),$$
$$\theta_4^3 \theta_4(2x) = \theta_4^4(x) - \theta_1^4(x).$$
From equations 2,3,4 of Exercise~\ref{problem9chapter20} we get
$$\theta_2 \theta_4^2 \theta_2(2x) = \theta_2^2(x) \theta_4^(x) - \theta_1^2(x) \theta_3^2(x),$$
$$\theta_3 \theta_4^2\theta_3(2x) = \theta_3^2(x) \theta_4^2(x) - \theta_1^2(x) \theta_2^2(x),$$
$$\theta_4^3 \theta_4(2x) = \theta_3^4(x) - \theta_2^4(x).$$
We have now derived all 12 equations of Exercise~\ref{problem11chapter20}, but we try Exercise~\ref{problem10chapter20} to see whether from each of the first three equations
$$\theta_2\theta_3\theta_4 \theta_1(2x) = 2 \theta_1(x) \theta_2(x) \theta_3(x) \theta_4(x),$$
(which we had in text), and
$$\theta_2^2 \theta_3 \theta_2(2x) = \theta_2^2(x) \theta_3^2(x) - \theta_1^2(x) \theta_4^2(x),$$
$$\theta_2 \theta_4^2 \theta_2(2x) = \theta_2^2(x) \theta_4^2(x) - \theta_1^2(x) \theta_3^2(x),$$
and
$$\theta_3 \theta_4^2 \theta_3(2x) = \theta_3^2(x) \theta_4^2(x) - \theta_1^2(x) \theta_2^2(x).$$
The last two appear as answers to Exercise~\ref{problem11chapter20}, parts 5 and 7.
\end{solution}
%%%%
%%
%%
%%%%
%%%%
%%
%%
%%%%
\begin{problem}\label{problem12chapter20}
Use the method of Section 168 to show that
$$\theta_3(z|\tau) = (-i \tau)^{-\frac{1}{2}} \exp \left( \dfrac{z^2}{\pi i \tau} \right) \theta_3 \left( \left. \dfrac{z}{\tau} \right| \dfrac{-t}{\tau} \right).$$
From the above identity, obtain corresponding ones for the other theta functions with the aid of the basic table, page 319.
\end{problem}
\begin{solution}
Consider the function
$$\psi(z) = \dfrac{\theta_3(z | \tau)}{\exp \left( \frac{z^2}{\pi | \tau} \right) \theta_3(\frac{z}{\tau} | \frac{-1}{\tau})}.$$
First the theta functions are analytic for all finite $z$ since $Im(\tau) > 0$ implies $Im\left( -\dfrac{1}{\tau} \right) > 0.$
To get the zeros of the denominator, recall that $\theta_3(y|t)$ has its zeros all simple ones located at
$$y = \dfrac{\pi}{2} + \dfrac{\pi t}{2} + n \pi + m \pi t$$
for integral $n$ and $m$. Then $\theta_3 \left( \left. \dfrac{z}{\tau} \right| -\dfrac{1}{\tau} \right)$ has its zeros all simple ones located at
$$\dfrac{z}{\tau} = \dfrac{\pi}{2} - \dfrac{\pi}{2 \tau} + n \pi - \dfrac{m \pi}{\tau}$$
or at
$$z = \dfrac{\pi \tau}{2} - \dfrac{\pi}{2} + n \pi \tau - m \pi,$$
which is equivalent to
$$z = \dfrac{\pi}{2} + \dfrac{\pi \tau}{2} + n_1 \pi + m_1 \pi \tau,$$
for integral $n_1$ and $m_1$. Therefore the zeros of $\theta_3 \left( z | \tau \right)$ and those of $\theta_3 \left( \left. \dfrac{z}{\tau} \right| -\dfrac{1}{\tau} \right)$ coincide. Hence the function $\psi(z0$ has no singular points in the finite plane.
To show that $\psi(z)$ has the desired two periods, consider $\psi(z+\pi)$ and $\psi(z+\pi \tau).$
$$\psi(z+\pi) = \dfrac{\theta_3(z+\pi | \tau)}{\exp \left(\frac{(z+ \pi)^2}{\pi i \tau} \right) \theta_3 \left( \frac{z+\pi}{\tau} | -\frac{1}{\tau} \right)}.$$
Recall that (basic table) $\theta_3(y+\pi,t) = \theta_3(y|t)$ and that
$$\theta_3(y+\pi t| t) = e^{-i \pi t} e^{-2iy} \theta_3(y|t).$$
Since $\theta_3(z)$ is an even function of $z$, we may now write
$$\begin{array}{ll}
\psi(z+\pi) &= \dfrac{\theta_3(z|\tau)}{\exp \left( \frac{z^2}{\pi i \tau} \right) \exp \left( \frac{2z}{i \tau} \right) \exp \left( \frac{\pi}{i \tau} \right) \theta_3 \left( -\frac{z}{\tau} - \frac{\pi}{\tau} | - \frac{1}{\tau} \right)} \\
&= \dfrac{\theta_3(z|\tau)}{\exp \left( \frac{z^2}{\pi i \tau} \right) \exp \left( - \frac{2 i z}{\tau} \right) \exp \left( - \frac{\pi i}{\tau} \right) \exp \left( \frac{i \pi}{\tau} \right) \exp \left( \frac{2i z}{\tau} \right) \theta_3 \left( - \frac{z}{\tau} | - \frac{1}{\tau} \right)} \\
&= \dfrac{\theta_3(z | \tau)}{\exp \left( \frac{z^2}{\pi i \tau} \right) \theta_3 \left( \frac{z}{\tau} | - \frac{1}{\tau} \right)} \\
&= \psi(z).
\end{array}$$
Thus $\psi(z)$ has a period $\pi$ in $z$. Next consider $\psi(z+\pi \tau):$
$$\psi(z+\pi \tau) = \dfrac{\theta_3(z+\pi \tau | \tau)}{\exp \left( \frac{(z+\pi \tau)^2}{\pi i \tau} \right) \theta_3 \left( \frac{z+\pi \tau}{\tau} | - \frac{1}{\tau} \right)} = \dfrac{e^{-i \pi \tau} e^{-2iz} \theta_3(z | \tau)}{\exp \left( \frac{z^2}{\pi i \tau} \exp \left( \frac{\pi \tau}{i} \right) \theta_3 \left( \frac{z}{\tau} + \pi | - \frac{1}{\tau} \right) \right)}.$$
We thus obtain
$$\psi(z+\pi \tau) = \dfrac{\theta_3(z | \tau)}{\exp \left( \frac{z^2}{\pi i \tau} \right) \theta_3 \left( \frac{z}{\tau} | - \frac{1}{\tau} \right)} = \psi(z).$$
Therefore $\psi(\tau)$ also has the period $\pi \tau$ in $z$.
We can now conclude that $\psi(z)$ is an elliptic function of order less than two. It is a constant with the value
$$c = \psi(z) = \psi(0) = \dfrac{\theta_3(0|\tau)}{e^0 \theta_3(0|-\frac{1}{\tau})} = \dfrac{\theta_3(0|\tau)}{\theta_3(0|-\frac{1}{\tau})}.$$
We shall evaluate $c$ later. At present we have
$$(A) \hspace{30pt} \theta_3(z|\tau) = c \exp \left( \dfrac{z^2}{\pi i \tau} \right) \theta_3 \left( \left. \dfrac{z}{\tau} \right| -\dfrac{1}{\tau} \right),$$
upon which we shall use our basic table.
In $(A)$ replace $z$ by $\left( z + \dfrac{\pi \tau}{2} \right)$ to get
$$\theta_3 \left( \left. z + \dfrac{\pi \tau}{2} \right| \tau \right) = c \exp \left( \dfrac{(z + \frac{\pi \tau}{2})^2}{\pi i \tau} \right) \theta_3 \left( \left. \dfrac{z}{\tau} + \dfrac{\pi}{2} \right| - \dfrac{1}{\tau} \right).$$
We conclude that
$$(B) \hspace{30pt} \theta_2(z|\tau) = c \exp \left( \dfrac{z^2}{\pi i \tau} \right) \theta_4 \left( \left. \dfrac{z}{\tau} \right| -\dfrac{1}{\tau} \right).$$
Return to $(A)$ and replace $z$ by $\left( z + \dfrac{\pi}{2} \right)$ to get
$$\theta_3 \left( \left. z + \dfrac{\pi}{2} \right| \tau \right) = c \exp \dfrac{(z + \frac{\pi}{2})^2}{\pi i \tau} \theta_3 \left( \left. \dfrac{z}{\tau} + \dfrac{\pi}{2 \tau} \right| - \dfrac{1}{\tau} \right)$$
or
$$\begin{array}{ll}
\theta_4(z | \tau) &= c \exp \left( \dfrac{z^2}{\pi i \tau} \right) \exp \left( \dfrac{z}{i \tau} \right) \exp \left( \dfrac{\pi}{4 i \tau} \right) \theta_3 \left( \left. -\dfrac{z}{\tau} + \dfrac{\pi}{2}\left( - \dfrac{1}{\tau} \right) \right| - \dfrac{1}{\tau} \right) \\
&= c \exp \left( \dfrac{z^2}{\pi i \tau} \right) \exp \left( \dfrac{z}{i \tau} \right) \exp \left( \dfrac{\pi}{4 i \tau} \right) \exp \left( \dfrac{\pi i }{4 \tau} \right) \exp \left( \dfrac{iz}{\tau} \right) \theta_2 \left( \left. -\dfrac{z}{\tau} \right| -\dfrac{1}{\tau} \right) \\
&= c \exp \left( \dfrac{z^2}{\pi i \tau} \right) \theta_2 \left( \left. \dfrac{z}{\tau} \right| -\dfrac{1}{\tau} \right).
\end{array}$$
Hence we arrive at
$$(C) \hspace{30pt} \theta_4(z | \tau) = c \exp \left( \dfrac{z^2}{\pi i \tau} \right) \theta_2 \left( \left. \dfrac{z}{\tau} \right| - \dfrac{1}{\tau} \right).$$
Now in $(C)$ replace $z$ by $\left( z + \dfrac{\pi \tau}{2} \right).$ We thus obtain
$$\theta_4 \left( \left. z + \dfrac{\pi \tau}{2} \right| \tau \right) = c \exp \dfrac{(z+\frac{\pi \tau}{2} )^2}{\pi i \tau } \theta_2 \left( \left. \dfrac{z}{\tau} + \dfrac{\pi}{2} \right| - \dfrac{1}{\tau} \right),$$
or
$$i \exp \left( - \dfrac{\pi i \tau}{4} \right) \exp (-iz) \theta_1(z|\tau) = c \exp \left( \dfrac{z^2}{\pi i \tau} \right) \exp \left( \dfrac{z}{c} \right) \exp \left( \dfrac{\pi \tau}{4 i} \right) (-1) \theta_1 \left( \left. \dfrac{z}{\tau} \right| - \dfrac{1}{\tau} \right).$$
we arrive in this way at
$$(D) \hspace{30pt} \theta_1(z | \tau) = ic \theta_1 \left( \left. \dfrac{z}{\tau} \right| - \dfrac{1}{\tau} \right).$$
We still need to find the value of $c$. From $(D)$ we get
$$(E) \hspace{30pt} \theta_1'(z| \tau) = \dfrac{ic}{\tau} \theta_1' \left( \left. \dfrac{z}{\tau} \right| - \dfrac{1}{\tau} \right).$$
We wish to put $z=0$ in $(E)$ and use the known result that $\theta_1'=\theta_2\theta_3\theta_4$. From $(E)$ we thus get
$$\theta_2(0|\tau) \theta_3(0|\tau) \theta_4(0|\tau) = \dfrac{ic}{\tau} \theta_2 \left( \left. 0 \right| -\dfrac{1}{\tau} \right) \theta_3 \left( \left. 0 \right| -\dfrac{1}{\tau} \right) \theta_4 \left( \left. 0 \right| - \dfrac{1}{\tau} \right),$$
or
$$\dfrac{\theta_2(0|\tau)}{\theta_4(0|-\frac{1}{\tau})} \cdot \dfrac{\theta_3(0|\tau)}{\theta_3(0|-\frac{1}{\tau})} \cdot \dfrac{\theta_4(0|\tau)}{\theta_2(0|-\frac{1}{\tau})} = \dfrac{ic}{\tau}.$$
With the aid of $(A), (B), (C),$ we may conclude that
$$ccc = \dfrac{ic}{\tau},$$
or
$$c^2 = \dfrac{-1}{i \tau}.$$
Hence $c = (-i \tau)^{-\frac{1}{2}}$ or $c = -(-i \tau)^{-\frac{1}{2}}$.
Now $\theta_3(z)$ was defined by
$$\theta_3(z | \tau) = 1 + 2 \displaystyle\sum_{n=1}^{\infty} e^{-i \pi n^2 \tau} \cos(2nz).$$
It follows that, if $\tau$ is pure imaginary, then
$$\theta_3(0|\tau) = 1+ 2 \displaystyle\sum_{n=0}^{\infty} e^{\pi n^2(-i \tau)} > 0$$
and, since $-1 | \tau$ is also then pure imaginary,
$$\theta_3 \left( \left. 0 \right| -\dfrac{1}{\tau} \right) > 0.$$
We may therefore conclude that $c = (-i \tau)^{-\frac{1}{2}}$.
Final result of our work is that the set of identities
$$\theta_3(z| \tau) = (-i \tau)^{-\frac{1}{2}} \exp \left( \dfrac{z^2}{\pi i \tau} \right) \theta_3 \left( \left. \dfrac{z}{\tau} \right| -\dfrac{1}{\tau} \right),$$
$$\theta_2(z | \tau) = (-i \tau)^{-\frac{1}{2}} \exp \left( \dfrac{z^2}{\pi i \tau} \right) \theta_4 \left( \left. \dfrac{z}{\tau} \right| -\dfrac{1}{\tau} \right),$$
$$\theta_4(z | \tau) = i(-i \tau)^{-\frac{1}{2}} \exp \left( \dfrac{z^2}{\pi i \tau} \right) \theta_2 \left( \left. \dfrac{z}{\tau} \right| -\dfrac{1}{\tau} \right),$$
$$\theta_1(z|\tau) = i(-i\tau)^{-\frac{1}{2}} \exp \left( \dfrac{z^2}{\pi i \tau} \right) \theta_1 \left( \left. \dfrac{z}{\tau} \right| -\dfrac{1}{\tau} \right).$$
With regard to the usefulness of these formulas, note that $q = \exp(\pi i \tau)$ so that $|q| = \exp[-Im(\tau)].$ For $Im(\tau)>0, |q|<1$ and we have convergence of the series definitions of the theta functions but that convergence is slow if $Im(\tau)$ is small so that $|q|$ is near unity.
Since
$$Im \left( - \dfrac{1}{\tau} \right) = \dfrac{Im(\tau)}{|\tau|^2},$$
the parameter $(-\tau^{-1})$ will be useful in computations with $Im(t)$ small and positive.
\end{solution}