-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter2.tex
364 lines (364 loc) · 17.9 KB
/
chapter2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
%%%%
%%
%%
%%%%
%%%% CHAPTER 2
%%%% CHAPTER 2
%%%%
%%
%%
%%%%
\section{Chapter 2 Solutions}
\begin{center}\hyperref[toc]{\^{}\^{}}\end{center}
\begin{center}\begin{tabular}{lllllllllllllllllllllllll}
\hyperref[problem1chapter2]{P1} & \hyperref[problem2chapter2]{P2} & \hyperref[problem3chapter2]{P3} & \hyperref[problem4chapter2]{P4} & \hyperref[problem5chapter2]{P5} & \hyperref[problem6chapter2]{P6} & \hyperref[problem7chapter2]{P7} & \hyperref[problem8chapter2]{P8} & \hyperref[problem9chapter2]{P9} & \hyperref[problem10chapter2]{P10} & \hyperref[problem11chapter2]{P11} & \hyperref[problem12chapter2]{P12} & \hyperref[problem13chapter2]{P13} & \hyperref[problem14chapter2]{P14} & \hyperref[problem15chapter2]{P15} &
\end{tabular}\end{center}
\setcounter{problem}{0}
\setcounter{solution}{0}
\begin{problem}\label{problem1chapter2} %Problem 1
Start with
$$(\dagger) \dfrac{\Gamma'(z)}{\Gamma(z)} = -\gamma - \dfrac{1}{z} - \displaystyle\sum_{n=1}^{\infty} \left( \dfrac{1}{z+n} - \dfrac{1}{n} \right),$$
prove that
$$\dfrac{2 \Gamma'(2z)}{\Gamma(2z)} - \dfrac{\Gamma'(z)}{\Gamma(z)} - \dfrac{\Gamma'(z+\frac{1}{2})}{\Gamma(z+\frac{1}{2})} = 2 \log 2,$$
and thus derive Legendre's duplication formula, page 24.
\end{problem}
\begin{solution}
Applying $(\dagger)$ three times and simplifying yields
\begin{eqnarray*}
\lefteqn{\dfrac{2 \Gamma'(2z)}{\Gamma(2z)} - \dfrac{\Gamma'(z)}{\Gamma(z)} - \dfrac{\Gamma'(z+\frac{1}{2})}{\Gamma(z+\frac{1}{2})}} \\
& &= -2 \gamma - \dfrac{2}{2z} + \gamma + \dfrac{1}{z} + \gamma + \dfrac{1}{z+\frac{1}{2}} - \displaystyle\sum_{n=1}^{\infty} \left( \dfrac{2}{2z+n} - \dfrac{2}{n} \right) + \displaystyle\sum_{n=1}^{\infty} \left( \dfrac{1}{z+n} - \dfrac{1}{n} \right) \\
& & \phantom{=}+ \displaystyle\sum_{n=1}^{\infty} \left( \dfrac{1}{z+\frac{1}{2}+n} - \dfrac{1}{n} \right) \\
& &= \dfrac{2}{2z+1} - \displaystyle\lim_{n \rightarrow \infty} \displaystyle\sum_{k=1}^{2n} \left( \dfrac{2}{2z+k} - \dfrac{2}{k} \right) + \displaystyle\lim_{n \rightarrow \infty} \displaystyle\sum_{k=1}^n \left( \dfrac{1}{z+k} - \dfrac{1}{k} \right) \\
& & \phantom{=}+ \displaystyle\lim_{n \rightarrow \infty} \displaystyle\sum_{k=1}^n \left( \dfrac{2}{2z+1+2k} - \dfrac{1}{k} \right) \\
& &= \dfrac{2}{2z+1} + \displaystyle\lim_{n \rightarrow \infty} \left[ \displaystyle\sum_{k=1}^{2n} \dfrac{-2}{2z+k} + 2 H_{2n} + \displaystyle\sum_{k=1}^n \dfrac{2}{2z+2k} - H_n \right. \\
& & \phantom{=} \left. + \displaystyle\sum_{k=1}^n \dfrac{2}{2z+2k+1} - H_n \right] \\
& &= \dfrac{2}{2z+1} + \displaystyle\lim_{n \rightarrow \infty} \left[ \displaystyle\sum_{k=1}^{2n} \dfrac{-2}{2z+k} + \displaystyle\sum_{k=2}^{2n+1} \dfrac{2}{2z+k} + 2 H_{2n} - 2 H_n \right] \\
& &= \dfrac{2}{2z+1} + \dfrac{-2}{2z+1} + \displaystyle\lim_{n \rightarrow \infty} \dfrac{2}{2z+2n+1} + \displaystyle\lim_{n \rightarrow \infty} (2 H_{2n} - 2 H_n) \\
& &= 0 + 0 + 2 \displaystyle\lim_{n \rightarrow \infty} \left[ (H_{2n}- \log 2n) - (H_n - \log n) + \log 2n - \log n \right] \\
& &= 2 [ \gamma - \gamma + \log 2 ] \\
& &= 2 \log 2. \qed
\end{eqnarray*}
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem2chapter2}
Show that $\Gamma' \left(\dfrac{1}{2} \right) = -(\gamma + 2 \log 2) \sqrt{\pi}$.
\end{problem}
\begin{solution}
By Problem $\ref{problem1chapter2}$, we know that
$$\dfrac{2 \Gamma'(2z)}{\Gamma(2z)} - \dfrac{\Gamma'(z)}{\Gamma(z)} - \dfrac{\Gamma'(z+\frac{1}{2})}{\Gamma(z+\frac{1}{2})} = 2 \log 2.$$
Now let $z=\dfrac{1}{2}$ to get
$$2 \dfrac{\Gamma'(1)}{\Gamma(1)} - \dfrac{\Gamma' \left(\frac{1}{2} \right)}{\Gamma \left(\frac{1}{2} \right)} - \frac{\Gamma'(1)}{\Gamma(1)} = 2 \log 2,$$
and so, algebra yields
$$\dfrac{\Gamma'(\frac{1}{2})}{\Gamma(\frac{1}{2})} =\dfrac{\Gamma'(1)}{\Gamma(1)} - 2 \log 2.$$
But $\Gamma(1)=1, \Gamma'(1)=-\gamma, \Gamma(\frac{1}{2}) = \sqrt{\pi}$, hence
$$\dfrac{\Gamma'(\frac{1}{2})}{\sqrt{\pi}} = - \dfrac{\gamma}{1} - 2 \log 2,$$
and by rearrangement,
$$\Gamma'\left(\frac{1}{2} \right) = -(\gamma + 2 \log 2) \sqrt{\pi}. \qed$$
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem3chapter2}
Use Euler's integral form $\Gamma(z) = \displaystyle\int_0^{\infty} e^{-t} t^{z-1} \mathrm{d}t$ to show that
$$\Gamma(z+1) = z \Gamma(z).$$
\end{problem}
\begin{solution}
From $\Gamma(z) = \displaystyle\int_0^{\infty} e^{-t} t^{z-1} \mathrm{d}t$, for $\mathrm{Re}(z) > 0$, integration by parts yields
$$\begin{array}{ll|ll}
u = t^z & \mathrm{d}v = e^{-t} \mathrm{d}t & \Gamma(z+1) &= \displaystyle\int_0^{\infty} e^{-t}t^z \mathrm{d}t \\
\mathrm{d}u = zt^{z-1} & v=-e^{-t} & &= \left[-t^z e^{-t} \right]_0^{\infty} + z \displaystyle\int_0^{\infty} e^{-t} t^{z-1} \mathrm{d}t \\
& & &= 0 + z \Gamma(z),
\end{array}$$
where $\displaystyle\lim_{t \rightarrow \infty} -t^z e^{-t}$ converges for $\Re(z) > 0 \qed$.
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem4chapter2}
Show that $\Gamma(z) = \displaystyle\lim_{n \rightarrow \infty} n^z B(z,n)$.
\end{problem}
\begin{solution}
From page 28 (1), we know
$$\Gamma(z) = \displaystyle\lim_{n \rightarrow \infty} \dfrac{(n-1)! n^z}{
(z)_n},$$
but
$$B(z,n) = \dfrac{\Gamma(z)\Gamma(n)}{\Gamma(z+n)} = \dfrac{\Gamma(z)(n-1)!}{(z)_n \Gamma(z)} = \dfrac{(n-1)!}{(z)_n}.$$
Hence
$$\Gamma(z) = \displaystyle\lim_{n \rightarrow \infty} n^z B(z,n). \qed$$
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem5chapter2}
Derive the following properties of the beta function:
\begin{enumerate}[(a)]
\item $pB(p,q+1) = qB(p+1,q)$;
\item $B(p,q) = B(p+1,q) + B(p,q+1)$;
\item $(p+q)B(p,q+1) = qB(p,q)$;
\item $B(p,q)B(p+q,r) = B(q,r)B(q+r,p)$.
\end{enumerate}
\end{problem}
\begin{solution}
\begin{enumerate}[(a)]
\item We know $B(p,q) = \dfrac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$, so
$$pB(p,q+1) = \dfrac{p \Gamma(p)\Gamma(q+1)}{\Gamma(p+q+1)} = \dfrac{\Gamma(p+1) q \Gamma(q)}{\Gamma(p+1+q)} = qB(p+1,q).$$
(note: $p \rightarrow q$ and $q \rightarrow p$ -- is this the symmetric property?)
\item
$$\begin{array}{ll}
B(p,q) &= \dfrac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)} \\
&= \dfrac{\Gamma(p)\Gamma(q)}{\dfrac{\Gamma(p+q+1)}{p+q}} \\
&= \dfrac{(p+q)\Gamma(p)\Gamma(q)}{\Gamma(p+q+1)} \\
&= \dfrac{p \Gamma(p)\Gamma(q)}{\Gamma(p+q+1)} + \dfrac{q \Gamma(p) \Gamma(q)}{\Gamma(p+q+1)} \\
&= \dfrac{\Gamma(p+1) \Gamma(q)}{\Gamma(p+q+1) + \dfrac{\Gamma(p) \Gamma(q+1)}{\Gamma(p+q+1)}} \\
&= B(p+1,q) + B(p,q+1).
\end{array}$$
\item $$\begin{array}{ll}
(p+q)B(p,q+1) &= \dfrac{(p+q)\Gamma(p))\Gamma(q+1)}{\Gamma(p+q+1} \\
&= \dfrac{(p+q)\Gamma(p) \Gamma(q+1)}{(p+q) \Gamma(p+q)} \\
&= \dfrac{\Gamma(p) \Gamma(q+1)}{\Gamma(p+q)} \\
&= \dfrac{\Gamma(p) q \Gamma(q)}{\Gamma(p+q)} \\
&= qB(p,q).
\end{array}$$
\item $$\begin{array}{ll}
B(p,q)B(p+q,n) &= \dfrac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)} \dfrac{\Gamma(p+q)\Gamma(n)}{\Gamma(p+q+n)} \\
&= \dfrac{\Gamma(p)\Gamma(q)\Gamma(n)}{\Gamma(p+q+n)} \\
&= \dfrac{\Gamma(q)\Gamma(n)}{\Gamma(q+n)} \dfrac{\Gamma(p)\Gamma(q+n)}{\Gamma(p+q+n)} \\
&= B(q,n) B(q+n,p). \qed
\end{array}$$
\end{enumerate}
\end{solution}%
%%%%
%%
%%
%%%%
\begin{problem}\label{problem6chapter2}
Show that for positive integral $n$, $B(p,n+1) = \dfrac{n!}{(p)_{n+1}}$.
\end{problem}
\begin{solution}
For integer $n$ and using Theorem 9 (pg. 23),
$$\begin{array}{ll}
B(p,n+1) &= \dfrac{\Gamma(p) \Gamma(n+1)}{\Gamma(p+n+1)} \\
&= \dfrac{\Gamma(p) \Gamma(n+1)}{(p+1)_n \Gamma(p+1)} \\
&= \dfrac{\Gamma(p) n!}{(p+1)_n p \Gamma(p)} \\
&= \dfrac{n!}{p(p+1)_n} \\
&= \dfrac{n!}{(p)_{n+1}}. \qed
\end{array}$$
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem7chapter2}
Evaluate $\displaystyle\int_{-1}^1 (1+x)^{p-1}(1-x)^{q-1} \mathrm{d}x$.
\end{problem}
\begin{solution}
Let $A = \displaystyle\int_{-1}^1(1+x)^{p-1}(1-x)^{q-1} \mathrm{d}x$. Now let
$$y = \dfrac{1+x}{2},$$
$$x=2y-1,$$
and
$$1-x=2-2y=2(1-y).$$
Hence
$$\begin{array}{ll}
A &= \displaystyle\int_0^1 2^{p-1} y^{p-1} 2^{q-1} (1-y)^{q-1} 2 \mathrm{d}y \\
&= 2^{p+q-1} \displaystyle\int_0^1 y^{p-1}(1-y)^{q-1} \mathrm{d}y \\
&= 2^{p+q-1} B(p,q). \qed
\end{array}$$
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem8chapter2}
Show that for $0 \leq k \leq n$,
$$(\alpha)_{n-k} = \dfrac{(-1)^k (\alpha)_n}{(1-\alpha-n)_k}.$$
Note particularly the special case $\alpha=1$.
\end{problem}
\begin{solution}
Consider $(\alpha)_{n-k}$ for $0 \leq k \leq n$. Then
$$\begin{array}{ll}
(\alpha)_{n-k} &= \alpha(\alpha+1) \ldots (\alpha+n-k-1) \\
&= \dfrac{\alpha(\alpha+1) \ldots (\alpha+n-k-1)[(\alpha+n-k)(\alpha+n-k+1)\ldots(\alpha+n-1)]}{(\alpha+n-1)(\alpha+n-2)\ldots(\alpha+n-k)} \\
&= \dfrac{(\alpha)_n}{(\alpha+n-k)_k} \\
&= \dfrac{(\alpha)_n}{(-1)^k(1-\alpha-n)_k} \\
&= \dfrac{(-1)^k (\alpha)_n}{(1-\alpha-n)_k}.
\end{array}$$
Note for $\alpha=1$, that $(n-k)! = \dfrac{(-1)^kn!}{(-n)_k}$. $\qed$
\end{solution}
%%%%
%%
%%
%%%%
\newpage
\begin{problem}\label{problem9chapter2}
Show that if $\alpha$ is not an integer,
$$\dfrac{\Gamma(1-\alpha-n)}{\Gamma(1-\alpha)} = \dfrac{(-1)^n}{(\alpha)_n}.$$
\end{problem}
\begin{solution}
Consider for $\alpha$ not equal to an integer
$$\begin{array}{ll}
\dfrac{\Gamma(1-\alpha-n)}{\Gamma(1-\alpha)} &= \dfrac{\Gamma(1-\alpha-n)}{-\alpha\Gamma(-\alpha)} \\
&= \dfrac{\Gamma(1-\alpha-n)}{(-\alpha)(-\alpha-1)\Gamma(-\alpha-1)} \\
&= \dfrac{\Gamma(1-\alpha-n)}{(-\alpha)(-\alpha-1)\ldots(-\alpha-n+1)\Gamma(1-\alpha-n)} \\
&= \dfrac{1}{(-1)^n(\alpha)_n},
\end{array}$$
as desired. $\qed$
\end{solution}
%%%%
%%
%%
%%%%
In the following problems, the function $P(x) := x - \lfloor x \rfloor - \dfrac{1}{2}$.
\begin{problem}\label{problem10chapter2}
Evaluate $\displaystyle\int_0^x P(y) \mathrm{d}y$.
\end{problem}
\begin{solution}
To evaluate $\displaystyle\int_0^x P(y) \mathrm{d}y$ when $P(y)=y- \lfloor y \rfloor -\dfrac{1}{2}$. Let $m$ be an integer so that $m \geq 0$. If $m \leq x < m+1$, then $\lfloor x \rfloor=m$ and
$$\begin{array}{ll}
\displaystyle\int_0^x P(y) \mathrm{d}y &= \displaystyle\int_m^x P(y) \mathrm{d}y \\
&= \displaystyle\int_m^x \left(y-m-\dfrac{1}{2} \right) \mathrm{d}y \\
&= \dfrac{1}{2}\left[\left(y-m-\dfrac{1}{2} \right)^2 \right]_m^x \\
&= \dfrac{1}{2} \left[ \left(x-m-\dfrac{1}{2} \right)^2 - \left(\dfrac{1}{2}\right)^2 \right] \\
&= \dfrac{1}{2} \left[ P^2(x)-\dfrac{1}{4} \right] \\
&= \dfrac{1}{2} P^2(x)-\dfrac{1}{8}. \qed
\end{array}$$
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem11chapter2}
Use integration by parts and the result of the above exercise to show that
$$\left| \displaystyle\int_n^{\infty} \dfrac{P(x)dx}{1+x} \mathrm{d}x \right| \leq \dfrac{1}{8(1+n)}.$$
\end{problem}
\begin{solution}
Consider $\displaystyle\int_n^{\infty} \dfrac{P(x)}{1+x} \mathrm{d}x$ and use integration by parts
$$\left\{ \begin{array}{llll}
\mathrm{d}v=P(x)\mathrm{d}x & u=(1+x)^{-1} & \\
v=\dfrac{1}{2} P^2(x)-\dfrac{1}{8} & du=-(1+x)^{-2} \mathrm{d}x & &
\end{array} \right.$$
$$\displaystyle\int_n^{\infty} \dfrac{P(x)}{1+x} \mathrm{d}x = \dfrac{1}{2} \left[ \dfrac{P^2(x)-\dfrac{1}{4}}{1+x} \right]_n^{\infty} + \dfrac{1}{2} \displaystyle\int_n^{\infty} \dfrac{P^2(x)-\dfrac{1}{4}}{(1+x)^2} \mathrm{d}x.$$
Now ${\mathrm max} \left\{ \left|P^2(x)-\dfrac{1}{4} \right| \right\} = \dfrac{1}{4}$ and $P^2(n)=\dfrac{1}{4}$ implies
$$\displaystyle\int_n^{\infty} \dfrac{P(x)}{1+x} \mathrm{d}x = 0 - 0 + \dfrac{1}{2} \displaystyle\int_n^{\infty} \dfrac{P^2(x)-\dfrac{1}{4}}{(1+x)^2} \mathrm{d}x$$
and
$$\left| \displaystyle\int_n^{\infty} \dfrac{P(x)}{1+x} \mathrm{d}x\right| \leq \dfrac{1}{2} \displaystyle\int_n^{\infty} \dfrac{\dfrac{1}{4}}{(1+x)^2} \mathrm{d}x = -\dfrac{1}{8} \left[ \dfrac{1}{1+x} \right]_n^{\infty}$$
or
$$\left| \displaystyle\int_n^{\infty} \dfrac{P(x)}{1+x} \mathrm{d}x \right| \leq \dfrac{1}{8} \left[ \dfrac{1}{1+n} \right]. \qed$$
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem12chapter2}
With the aid of the above problem, prove the convergence of
$$\displaystyle\int_0^{\infty} \dfrac{P(x) \mathrm{d}x}{1+x}.$$
\end{problem}
\begin{solution}
$\displaystyle\int_0^{\infty} \dfrac{P(x)}{1+x} \mathrm{d}x$ converges $\longleftrightarrow \displaystyle\lim_{n \rightarrow \infty} \int_n^{\infty} \dfrac{P(x)}{1+x} \mathrm{d}x = 0$
but from Exercise $\ref{problem11chapter2}$,
$$\displaystyle\lim_{n \rightarrow \infty} \left| \displaystyle\int_n^{\infty} \dfrac{P(x)}{1+x} \mathrm{d}x \right| \leq \displaystyle\lim_{N \rightarrow \infty} \dfrac{1}{8(1+n)} = 0.$$
Hence $\displaystyle\int_0^{\infty} \dfrac{P(x)}{1+x} \mathrm{d}x < \infty$.
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem13chapter2}
Show that
$$\displaystyle\int_0^{\infty} \dfrac{P(x) \mathrm{d}x}{1+x} = \displaystyle\sum_{n=0}^{\infty} \displaystyle\int_n^{n+1} \dfrac{P(x) \mathrm{d}x}{1+x} = \displaystyle\sum_{n=0}^{\infty} \displaystyle\int_0^1 \dfrac{(y - \frac{1}{2}) \mathrm{d}y}{1+n+y}.$$
Then prove that
$$\displaystyle\lim_{n \rightarrow \infty} n^2 \displaystyle\int_0^1 \dfrac{(y-\frac{1}{2}) \mathrm{d}y}{1+n+y} = - \dfrac{1}{12}$$
and thus conclude that $\displaystyle\int_0^{\infty} \dfrac{P(x) \mathrm{d}x}{1+x}$ is convergent.
\end{problem}
\begin{solution}
(Solution by Leon Hall)
Because $P(x)$ is periodic with period $1$, it is clear that
$$\displaystyle\int_0^{\infty} \dfrac{P(x)}{1+x} \mathrm{d}x = \displaystyle\sum_{n=0}^{\infty} \displaystyle\int_n^{n+1} \dfrac{P(x)}{1+x} \mathrm{d}x.$$
Let $x = n+y$. Then
$$\begin{array}{ll}
\displaystyle\int_n^{n+1} \dfrac{P(x)}{1+x} \mathrm{d}x &= \displaystyle\int_0^1 \dfrac{P(n+y)}{1+n+y} \mathrm{d}y \\
&= \displaystyle\int_0^1 \dfrac{P(y)}{1+n+y}\mathrm{d}y \\
&= \displaystyle\int_0^1 \dfrac{y - \frac{1}{2}}{1+n+y} \mathrm{d}y.
\end{array}$$
This establishes the first set of equalities.
$$\begin{array}{ll}
\displaystyle\int_0^1 \dfrac{y - \frac{1}{2}}{y+n+1} \mathrm{d}y &= \displaystyle\int_0^1 \left[ 1 - \left( n + \dfrac{3}{2} \right) \dfrac{1}{y+n+1} \right] \mathrm{d}y \\
&= \left[ y - \left( n + \dfrac{3}{2} \right) \log(y+n+1) \right]_0^1 \\
&= 1 - \left( n + \dfrac{3}{2} \right) \log \dfrac{n+2}{n+1} \\
&= 1 - \left( n + \dfrac{3}{2} \right) \log \left( 1 + \dfrac{1}{n+1} \right) \\
&= 1\!-\!\left(\!n\!+\!\dfrac{3}{2}\!\right)\!\left(\!\dfrac{1}{n+1}\!-\!\dfrac{1}{2(n+1)^2}\!+\!\dfrac{1}{3(n+1)^3}\!-\!\dfrac{1}{4(n+1)^4}\!+\!\ldots\!\right)%
\end{array}$$
To determine the convergence of $\displaystyle\sum_{n=0}^{\infty} \displaystyle\int_0^1 \dfrac{(y - \frac{1}{2})}{y+n+1} \mathrm{d}y$, we compare with the known convergent series $\displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^2}$ using the limit comparison test:
\begin{eqnarray*}
\lefteqn{\dfrac{\displaystyle\int_0^1 \dfrac{(y - \frac{1}{2})}{y+n+1} \mathrm{d}y}{\frac{1}{n^2}}} \\
& &= n^2 - n^2 \left( n + \dfrac{3}{2} \right) \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k(n+1)^k} \\
& &= n^2 - n^2 \left( n + \dfrac{3}{2} \right) \left[ \dfrac{1}{n+1} - \dfrac{1}{2(n+1)^2} + \dfrac{1}{3(n+1)^3} \right] + \mathcal{O} \left( \dfrac{1}{n+1} \right) \\
& &= \dfrac{6n^2(n+1)^3 - n^2 ( n + \frac{3}{2}) [6(n+1)^2 - 3(n+1)+2]}{6(n+1)^3} + \mathcal{O} \left( \dfrac{1}{n+1} \right) \\
& &= \dfrac{6n^5 + 18n^4 + 18n^3 + 6n^2 - [6n^5 + 18n^4 + \frac{37}{2} n^3 + \frac{15}{2} n^2]}{6(n+1)^3} + \mathcal{O} \left( \dfrac{1}{n+1} \right) \\
& &= \dfrac{-\frac{1}{2} n^3}{6(n+1)^3} + \mathcal{O} \left( \dfrac{1}{n+1} \right).
\end{eqnarray*}
Thus,
$$\displaystyle\lim_{n \rightarrow \infty} n^2 \displaystyle\int_0^1 \dfrac{(y - \frac{1}{2})}{y+n+1} \mathrm{d}y = -\dfrac{1}{12},$$
and
$$\displaystyle\sum_{n=0}^{\infty} \displaystyle\int_0^1 \dfrac{(y-\frac{1}{2})}{y+n+1} \mathrm{d}y = \displaystyle\int_0^{\infty} \dfrac{P(x)}{1+x} \mathrm{d}x$$
converges.
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem14chapter2}
Apply Theorem 11, page 27, to the function $f(x) = (1+x)^{-1}$; let $n \rightarrow \infty$ and thus conclude that
$$\gamma = \dfrac{1}{2} - \displaystyle\int_1^{\infty} y^{-2} P(y) \mathrm{d}y.$$
\end{problem}
\begin{solution}(Solution by Leon Hall)
Let $f(x) = \dfrac{1}{1+x}$. Theorem 11, page 27 gives with $p=0, q=n$,
$$\displaystyle\sum_{k=0}^n \dfrac{1}{1+k} = \displaystyle\int_0^n \dfrac{1}{1+x} \mathrm{d}x + \dfrac{1}{2} + \dfrac{1}{2} \left( \dfrac{1}{1+n} \right) + \displaystyle\int_0^n f'(x) B_1(x) \mathrm{d}x.$$
So,
$$\begin{array}{ll}
\displaystyle\sum_{k=0}^n \dfrac{1}{1+k} - \log(1+n) &= \dfrac{1}{2} + \dfrac{1}{2} \left( \dfrac{1}{1+n} \right) + \displaystyle\int_0^n - \dfrac{B_1(x)}{(1+x)^2} \mathrm{d}x \\
y:=x+1 &= \dfrac{1}{2} + \dfrac{1}{2} \left( \dfrac{1}{1+n} \right) + \displaystyle\int_1^{n+1} - \dfrac{B_1(y+1)}{y^2} \mathrm{d}y \\
&= \dfrac{1}{2} + \dfrac{1}{2} \left( \dfrac{1}{1+n} \right) - \displaystyle\int_1^{n+1} \dfrac{B_1(y)}{y^2} \mathrm{d}y
\end{array}$$
\end{solution}
%%%%
%%
%%
%%%%
\begin{problem}\label{problem15chapter2}
Use the relation $\Gamma(z) \Gamma(1-z) = \dfrac{\pi}{\sin \pi z}$ and the elementary result
$$\sin(x)\sin(y) = \dfrac{1}{2} [ \cos (x-y) - \cos(x+y) ]$$
to prove that
\begin{eqnarray*}
\lefteqn{1 - \dfrac{\Gamma(c)\Gamma(1-c)\Gamma(c-a-b)\Gamma(a+b+1-c)}{\Gamma(c-a)\Gamma(a+1-c)\Gamma(c-b)\Gamma(b+1-c)}} \\
& &= \dfrac{\Gamma(2-c)\Gamma(c-1)\Gamma(c-a-b)\Gamma(a+b+1-c)}{\Gamma(a)\Gamma(1-a)\Gamma(b)\Gamma(1-b)}.
\end{eqnarray*}
\end{problem}
\begin{solution}
Note that
$$1-(c-a-b)=a+b+1-c,$$
$$1-(c-a)=a+1-c,$$
and
$$1-(c-b)=b=1-c,$$
so we can use the gamma function relation four times to get
\begin{eqnarray*}
\lefteqn{1 - \dfrac{\Gamma(c)\Gamma(1-c)\Gamma(c-a-b)\Gamma(a+b+1-c)}{\Gamma(c-a)\Gamma(a+1-c)\Gamma(c-b)\Gamma(b+1-c)}} \\
& &= 1 - \dfrac{\pi^2 \sin(\pi(c-a)) \sin(\pi(c-b))}{\pi^2 \sin(\pi c) \sin (\pi(c-a-b))} \\
& &= \dfrac{\sin(\pi c) \sin (\pi(c-a-b)) - \sin (\pi(c-a)) \sin (\pi(c-b))}{\sin(\pi c)\sin \pi(c-a-b)}.
\end{eqnarray*}
Use the trigonometric identity and continue the equality:
$$\begin{array}{ll}
&=\!\dfrac{\frac{1}{2}[\cos(\pi(a+b))\!-\!\cos(\pi(2c-a-b))]\!-\!\frac{1}{2}[\cos(\pi(b-a))\!-\!\cos(\pi(2c-a-b))]}{\frac{1}{2}[\cos(\pi(a+b))\!-\!\cos(\pi(2c-a-b))]} \\
&= \dfrac{-\frac{1}{2} [ \cos(\pi (b-a)) - \cos(\pi (a+b))]}{\frac{1}{2}[\cos(\pi(a+b)) - \cos(\pi(2c-a-b))]} \\
&= \dfrac{-\sin (\pi a) \sin(\pi b)}{\sin (\pi c) \sin(\pi(c-a-b))} \\
&= \dfrac{-\sin(\pi a) \sin(\pi b)}{-\sin(\pi(c-1)) \sin(\pi(c-a-b))}.
\end{array}$$
Canceling minus signs and multiplying and dividing by $\pi^2$ yields
$$= \dfrac{\Gamma(c-1)\Gamma(2-c)\Gamma(c-a-b)\Gamma(a+b+1-c)}{\Gamma(a)\Gamma(1-a)\Gamma(b)\Gamma(1-b)}$$
as desired.
\end{solution}