-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathkelvin_helmholtz.jl
138 lines (103 loc) · 5.55 KB
/
kelvin_helmholtz.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
using Oceananigans
using Oceananigans.Units
using Plots
using Printf
using JLD2
L = 10
grid = RectilinearGrid(size=(32, 32, 64), x=(-L/2, L/2), y=(-L/2, L/2), z=(-L/2, L/2),
halo=(3,3,3,),
topology=(Periodic, Periodic, Bounded))
#
# Our basic state thus has a thin layer of stratification in the center of
# the channel, embedded within a thicker shear layer surrounded by unstratified fluid.
function run_kelvin_helmholtz(closure; grid=grid,
Ri=0.1, h=1/4, amplitude=1e-3,
stop_time=200,
advection=UpwindBiasedFifthOrder(),
model_kwargs...,
)
model = NonhydrostaticModel(timestepper = :RungeKutta3,
advection = advection,
grid = grid,
coriolis = nothing,
closure = closure,
buoyancy = BuoyancyTracer(),
tracers = :b)
@show model
noise(x, y, z) = amplitude * randn()
shear_flow(x, y, z) = tanh(z) + noise(x, y, z)
stratification(x, y, z) = h * Ri * tanh(z / h) + noise(x, y, z)
set!(model, u=shear_flow, v=noise, w=noise, b=stratification)
Δt_diffusive = grid.Δzᵃᵃᶜ^2 / maximum(model.diffusivity_fields.νₑ)
Δt_advective = grid.Δzᵃᵃᶜ / maximum(model.velocities.u)
simulation = Simulation(model, Δt=0.5 * min(Δt_advective, Δt_diffusive),
stop_time=stop_time)
# Simple logging
start_time = 1e-9*time_ns()
# Simple logging
progress(sim) = @info @sprintf("[%.2f %%] iter %d, t = %s, Δt = %s, max(|w|): %.2e",
100time(sim) / stop_time,
iteration(sim),
prettytime(sim),
prettytime(sim.Δt),
maximum(abs, sim.model.velocities.w))
simulation.callbacks[:progress] = Callback(progress, IterationInterval(10))
# Adaptive time-stepping
wizard = TimeStepWizard(cfl=0.8, diffusive_cfl=0.5, max_change=1.05, min_change=0.1)
simulation.callbacks[:wizard] = Callback(wizard, IterationInterval(1))
u, v, w = model.velocities
b = model.tracers.b
total_vorticity = Field(∂z(u) - ∂x(w))
closure_name = string(typeof(closure).name.wrapper) # Get closure's name
simulation.output_writers[:snapshots] = JLD2OutputWriter(model, (ω=total_vorticity, b=b, νₑ=model.diffusivity_fields.νₑ),
schedule = TimeInterval(1),
field_slicer = FieldSlicer(j=1),
prefix = "kelvin_helmholtz_instability_$closure_name",
force = true)
@info "*** Running a simulation of Kelvin-Helmholtz instability with $closure_name closure"
run!(simulation)
return simulation
end
function plot_video(simulation; fps=14, size=(800, 600))
jld2writer = simulation.output_writers[:snapshots]
file = jldopen(jld2writer.filepath)
iterations = parse.(Int, keys(file["timeseries/t"]))
@info "Making a neat movie from $(jld2writer.filepath)"
xF, yF, zF = nodes(jld2writer.outputs[:ω])
xC, yC, zC = nodes(jld2writer.outputs[:b])
function eigenplot(ω, b, σ, t; ω_lim=maximum(abs, ω)+1e-16, b_lim=maximum(abs, b)+1e-16)
kwargs = (xlabel="x", ylabel="z", linewidth=0, label=nothing, color = :balance,)
ω_title(t) = t == nothing ? @sprintf("vorticity") : @sprintf("vorticity at t = %.2f", t)
plot_ω = heatmap(xF, zF, clamp.(ω, -ω_lim, ω_lim)';
levels = range(-ω_lim, stop=ω_lim, length=20),
xlims = (xF[1], xF[grid.Nx]),
ylims = (zF[1], zF[grid.Nz]),
clims = (-ω_lim, ω_lim),
title = ω_title(t), kwargs...)
b_title(t) = t == nothing ? @sprintf("buoyancy") : @sprintf("buoyancy at t = %.2f", t)
plot_b = contourf(xC, zC, clamp.(b, -b_lim, b_lim)';
levels = range(-b_lim, stop=b_lim, length=20),
xlims = (xC[1], xC[grid.Nx]),
ylims = (zC[1], zC[grid.Nz]),
clims = (-b_lim, b_lim),
title = b_title(t), kwargs...)
return plot(plot_ω, plot_b, layout=(1, 2),)
end
anim_total = @animate for (i, iteration) in enumerate(iterations)
@info "Plotting frame $i from iteration $iteration..."
t = file["timeseries/t/$iteration"]
ω_snapshot = file["timeseries/ω/$iteration"][:, 1, :]
b_snapshot = file["timeseries/b/$iteration"][:, 1, :]
ν_snapshot = file["timeseries/νₑ/$iteration"][:, 1, :]
eigenmode_plot = eigenplot(ω_snapshot, b_snapshot, nothing, t; ω_lim=1, b_lim=0.05)
plot(eigenmode_plot, size=size)
end
videofile_name = replace(jld2writer.filepath, "jld2"=>"mp4")
mp4(anim_total, videofile_name, fps = fps) # hide
end
closures = [AnisotropicMinimumDissipation(), SmagorinskyLilly()]
for closure in closures
@info "\nStarting simulation with closure" closure
global simulation = run_kelvin_helmholtz(closure, grid=grid, stop_time=150)
plot_video(simulation, fps=14, size=(800, 300))
end