forked from LabForComputationalVision/textureSynth
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathadjustCorr2s.m
99 lines (88 loc) · 2.38 KB
/
adjustCorr2s.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
% [newX, snr1, snr2, Mx, My] = adjustCorr2s(X, Cx, Y, Cxy, MODE, p)
%
% Linearly adjust variables in X to have correlation Cx, and cross-correlation Cxy.
% Rows of X, Y, and newX are samples of (random) row-vectors, such that:
% 1: newX = X * Mx + Y * My
% 2: newX' * newX = Cx
% 3: newX' * Y = Cxy
%
% MODE is optional:
% 0 => choose randomly from the space of linear solutions
% 1 => simplest soln
% 2 => minimize angle change
% 3 => Simple rotational (DEFAULT)
% 4 => SVD minimal vector change soln
%
% p is optional:
% Imposes an intermediate value of correlation between the current ones
% Bx and Bxy and the specified Cx and Cxy:
% Cx' = (1-p)*Bx + p*Cx;
% Cxy' = (1-p)*Bxy + p*Cxy;
% DEFAULT is p=1.
% EPS, 11/25/97
function [newX,snr1,snr2,Mx,My] = adjustCorr2s(X, Cx, Y, Cxy, mode, p)
Warn = 0; % Set to 1 if you want to display warning messages
if (exist('mode') ~= 1)
mode = 3;
end
if (exist('p') ~= 1)
p = 1;
end
Bx = innerProd(X) / size(X,1);
Bxy = (X' * Y) / size(X,1);
By = innerProd(Y) / size(X,1);
iBy = inv(By);
Current = Bx - (Bxy * iBy * Bxy');
Cx0 = Cx;
Cx = (1-p)*Bx + p*Cx;
Cxy0 = Cxy;
Cxy = (1-p)*Bxy + p*Cxy;
Desired = Cx - (Cxy * iBy * Cxy');
[E, D] = eig(Current);
D = diag(D);
if any(D < 0) & Warn
ind = find(D<0);
fprintf(1,'Warning: negative current eigenvalues: %d\n',D(ind)');
end
[junk,Ind] = sort(D);
D = diag(sqrt(D(Ind(size(Ind,1):-1:1))));
E = E(:,Ind(size(Ind,1):-1:1));
[Eo,Do] = eig(Desired);
Do = diag(Do);
if any(Do < 0) & Warn
ind = find(Do<0);
fprintf(1,'Warning: negative desired eigenvalues: %d\n',Do(ind)');
end
[junk,Ind] = sort(Do);
Do = diag(sqrt(Do(Ind(size(Ind,1):-1:1))));
Eo = Eo(:,Ind(size(Ind,1):-1:1));
if (mode == 0)
Orth = orth(rand(size(D)));
elseif (mode == 1) % eye
Orth = eye(size(D));
elseif (mode == 2) % simple
A = [ eye(size(Cx)); -iBy*Bxy' ];
Ao = [ eye(size(Cx)); -iBy*Cxy' ];
[U,S,V] = svd(E' * pinv(A) * Ao * Eo);
Orth = U * V';
elseif (mode == 3)
Orth = E' * Eo;
else % SVD
A = [ eye(size(Cx)); -iBy*Bxy' ];
Ao = [ eye(size(Cx)); -iBy*Cxy' ];
[U,S,V] = svd(D * E' * pinv(A) * Ao * Eo * inv(Do));
Orth = U * V';
end
Mx = E * inv(D) * Orth * Do * Eo';
My = iBy * (Cxy' - Bxy' * Mx);
newX = X * Mx + Y * My;
if Cx0~=Bx,
snr1=10*log10(sum(sum(Cx0.^2))/sum(sum((Cx0-Bx).^2)));
else
snr1 = Inf;
end
if Cxy0~=Bxy,
snr2=10*log10(sum(sum(Cxy0.^2))/sum(sum((Cxy0-Bxy).^2)));
else
snr2 = Inf;
end