-
Notifications
You must be signed in to change notification settings - Fork 0
/
BVSChannel.cc
201 lines (137 loc) · 4.94 KB
/
BVSChannel.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/*
* BVSChannel.cc
* Copyright (c) 2024 Technische Universität Berlin
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* Created on: 2023. 12. 6.
* Author: Laurenz Ebner
*/
#include "BVSChannel.h"
#include "NanoNetDevice.h"
#include "GatewayNetDevice.h"
#include <cstdlib>
#include <ctime>
namespace ns3{
BVSChannel::BVSChannel(float vesselthickness)
{
vector<Ptr<NetDevice> > devices;
m_devices = devices;
vector<Ptr<GatewayNetDevice> > gdev;
m_gatedevices = gdev;
m_vesselthickness = vesselthickness;
}
BVSChannel::~BVSChannel()
{
}
void BVSChannel::Add(Ptr<NetDevice> device) {
m_devices.push_back(device);
}
size_t BVSChannel::GetNDevices (void) const
{
return m_devices.size();
}
Ptr<NetDevice> BVSChannel::GetDevice (size_t i) const
{
return m_devices[i];
}
void BVSChannel::AddGateway(Ptr<GatewayNetDevice> device)
{
m_gatedevices.push_back(device);
}
Ptr<GatewayNetDevice> BVSChannel::findGateway( int gatewayID)
{
for( int i = 0; i <= (int) m_gatedevices.size(); i++ )
{
if (m_gatedevices[i]->getPosition() == gatewayID)
{
return m_gatedevices[i];
}
}
return nullptr;
}
void BVSChannel::send(Ptr<NanoNetDevice> ndev, int pos)
{
Ptr<GatewayNetDevice> gdev = this->findGateway(pos);
MAC_PHY_DATA *mac_phy_data = new MAC_PHY_DATA;
*(mac_phy_data) = *(ndev->getMacPhyData());
//uncomment for terminal output
// cout << "send : | ";
for(int i = 0; i < TESTPACKETSIZE; i++ )
{
(*mac_phy_data).SEQ_TX[i] = (*mac_phy_data).SEQ_TX[i] * sqrt(POWER);
// cout << (*mac_phy_data).SEQ_TX[i] << " | ";
(*mac_phy_data).SEQ_RX[i] = (*mac_phy_data).SEQ_TX[i];
}
// cout << "\n";
// length of channel, 100 samples, memory, MULITPLICATION for now -> no memory
double comm_dist = sqrt(pow(DIST_INIT,2) + pow(SKIN_THICKNESS + TISSUETHICKNESS + m_vesselthickness,2));
//cout << "pathloss" << convertdBToWatt(-pathLoss(FREQ_THZ, comm_dist, SKIN_THICKNESS, TISSUETHICKNESS, m_vesselthickness)) << "\n";
double pathl{convertdBToWatt(-pathLoss(FREQ_THZ, comm_dist, SKIN_THICKNESS, TISSUETHICKNESS, m_vesselthickness))};
transform((*mac_phy_data).SEQ_RX.begin(),(*mac_phy_data).SEQ_RX.end(),
(*mac_phy_data).SEQ_RX.begin(), [&pathl](auto& c){return c*sqrt(pathl);});
vector<double> noise = createNoiseSequence();
//uncomment for terminal output
/* cout << "noise : | ";
for(int i = 0; i < TESTPACKETSIZE; i++ )
{
cout << noise[i] << " | ";
}
cout << "\n";
*/
// cout << "recv : | ";
for(int i = 0; i < TESTPACKETSIZE; i++ )
{
(*mac_phy_data).SEQ_RX[i] = (*mac_phy_data).SEQ_RX[i] + noise[i];
// cout << (*mac_phy_data).SEQ_RX[i] << " | ";
}
// cout << "\n";
gdev->Receive(mac_phy_data, m_vesselthickness);
}
vector<double> BVSChannel::createNoiseSequence()
{
random_device rd{};
mt19937 gen{rd()};
double c = 299792458.0; //speed of light in vacuum
double kB = 1.38064852e-23; //Boltzman constant
double t0 = 310; //reference temperature
double k = 0.0072; //extinction coefficient from blood absoprtion coefficient
double Tmol = t0 * (1- exp((-4*M_PI*FREQ_THZ*(SKIN_THICKNESS+TISSUETHICKNESS+m_vesselthickness)*k)/c));
double variance = kB*Tmol;
double stddev = sqrt(variance);
//cout << variance << '\n';
normal_distribution d{0.0, stddev};
vector<double> ret_val(TESTPACKETSIZE,0);
for(int i = 0; i < TESTPACKETSIZE; i++)
{
ret_val[i] = d(gen);
}
return ret_val;
/*
// Seed the random number generator
std::srand(42); // Using a fixed seed value
// Vector to store the output
std::vector<double> ret_val(TESTPACKETSIZE);
// Generate white Gaussian noise using Box-Muller Transform
for (int j = 0; j < TESTPACKETSIZE; ++j) {
double u1, u2, s;
// Generate two uniform random numbers in (0, 1)
u1 = (std::rand() + 1.0) / (RAND_MAX + 1.0); // +1 to avoid 0
u2 = (std::rand() + 1.0) / (RAND_MAX + 1.0); // +1 to avoid 0
// Box-Muller transform
double z0 = sqrt(-2.0 * log(u1)) * cos(2.0 * M_PI * u2); // Standard normal variable
ret_val[j] = z0 * stddev; // Scale by the standard deviation
}
return ret_val;
*/
}
}