-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
213 lines (168 loc) · 8.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
"""
main.py
---------------------
Description:
This file contains the main code for processing leaf images.
Authors: LE GOURRIEREC Titouan, CONNESSON Léna, PROUVOST Axel
Date: 04/06/2024
"""
import os
import shutil
import time
import cv2
import pandas
from EasIlastik.run_ilastik import run_ilastik
from leaf_detection import leaf_detection
from leaf_detection import is_image_usable
from text_detection import text_detection
from utils import setup_workspace
from utils import convert_color_space
from utils import leaves_analysis
from utils import status_update
########################################################################################################
############################ Parameters & Constants #############################
########################################################################################################
# Parameters
COLOR_SPACE = 'LAB'
MODEL_PATH = ''
LABELS_WIDTH_PIXELS = 700
LABELS_WIDTH_MM = 12.7
# Constants
COLOR_SPACES = ['YUV', 'HSV', 'LAB', 'HLS']
IMAGE_EXTENSIONS = ['.jpg', '.jpeg', '.png']
PIXEL_AREA = (LABELS_WIDTH_MM/LABELS_WIDTH_PIXELS)**2
########################################################################################################
############################ Main Function #############################
########################################################################################################
def main(input_directory: str,
output_directory: str,
update_status = None,
model_path: str = MODEL_PATH,
color_space: str = COLOR_SPACE) -> None:
"""
Main function to process the images of leaves and extract the required information.
Parameters:
- input_directory (str): The directory where the input images are located.
- output_directory (str): The directory where the output will be saved.
- update_status (function, optional): A function to update the status of the process. Defaults to None.
- model_path (str, optional): The path to the model. Defaults to MODEL_PATH.
- color_space (str, optional): The color space to be used for image processing. Defaults to COLOR_SPACE.
"""
# Start of process
start_process = status_update(update_status, "Start of process.\n")
# Extraction of leaves and labels
start = status_update(update_status, "Start of extraction of leaves and labels.")
results_path, file_path, _, _, results_dataframe, _, _ = save_leaves(input_directory, output_directory)
status_update(update_status, f"End of extraction of leaves and labels. ({round(time.time() - start)}s)\n")
# Color space conversion
start = status_update(update_status, "Start of color space conversion.")
if color_space in COLOR_SPACES:
color_space_subdir = convert_color_space(file_path, results_path, color_space)
else:
color_space_subdir = file_path
status_update(update_status, f"End of color space conversion. ({round(time.time() - start)}s)\n")
# Leaves segmentation
start = status_update(update_status, "Start of leaves segmentation.")
segmented_leaves_path = os.path.join(results_path, 'segmented_leaves') + '/'
os.makedirs(segmented_leaves_path, exist_ok=True)
if color_space in COLOR_SPACES:
input_path = color_space_subdir
else:
input_path = file_path
run_ilastik(input_path = input_path,
model_path = model_path,
result_base_path = segmented_leaves_path)
if color_space in COLOR_SPACES:
shutil.rmtree(color_space_subdir)
status_update(update_status, f"End of leaves segmentation. ({round(time.time() - start)}s)\n")
# Results analysis
start = status_update(update_status, "Start of results analysis.")
# Extract leaf number from the new file name
leaf_number = []
for leaf in results_dataframe['New_File_Name']:
leaf_number.append(leaf.split('_')[1].split('.')[0][-1])
# Insert the new column 'Leaf_Number' after 'New_File_Name'
loc = results_dataframe.columns.get_loc("New_File_Name") + 1
results_dataframe.insert(loc, 'Leaf_Number', leaf_number)
# Analyze the leaves and get the areas of different parts
_, leaf_area, healthy_leaf_area, oidium_area, rust_area = leaves_analysis(results_dataframe, segmented_leaves_path, PIXEL_AREA)
# Add the areas to the dataframe
results_dataframe['leaf_area'] = leaf_area
results_dataframe['healthy_leaf_area'] = healthy_leaf_area
results_dataframe['oidium_area'] = oidium_area
results_dataframe['rust_area'] = rust_area
# Save the results to a CSV file
results_dataframe.to_csv(os.path.join(results_path, 'results.csv'), index=False)
status_update(update_status, f"End of results analysis. ({round(time.time() - start)}s)\n")
# End of process
status_update(update_status, f"End of process. ({round(time.time() - start_process)}s)")
########################################################################################################
############################ Helper Functions #############################
########################################################################################################
def save_leaves(input_directory: str,
output_directory: str) -> tuple:
"""
This function extracts leaves and labels from images and saves them to files.
Parameters:
input_directory (str): The directory where the input images are stored.
output_directory (str): The directory where the output files should be saved.
Returns:
tuple: A tuple containing the paths to the results, file, unusable file, and labels directories,
and a DataFrame containing the results.
"""
# Set up the workspace
results_path, file_path, unusable_file_path, labels_path = setup_workspace(output_directory)
# Initialize lists to store the results
R_list, P_list, code_champ_list, M_list, EPO_list = [], [], [], [], []
labels_index = []
original_file_names = []
new_file_names = []
count_usable_files = 1
count_unusable_files = 0
for filename in os.listdir(input_directory):
# Check if the file is an image file
if os.path.splitext(filename)[1].lower() in IMAGE_EXTENSIONS:
# Create the full path to the image file
full_path = os.path.join(input_directory, filename)
# Read the image file
img = cv2.imread(full_path)
# Check if the image is usable
if not is_image_usable(img):
# Save the unusable file to the unusable_file_path directory
cv2.imwrite(os.path.join(unusable_file_path, f"Unusable_File_{filename}"), img)
count_unusable_files += 1
else:
R, P, code_champ, M, EPO, text_box_result = text_detection(img)
# Save the labels to the labels_path directory
cv2.imwrite(os.path.join(labels_path, f"Labels_{count_usable_files}.jpg"), text_box_result)
# Detect leaves in the image
bounding_boxes = leaf_detection(img)
#original_file_name, extension = os.path.splitext(os.path.basename(full_path))
# Save the processed image to the file_path directory
for j, box in enumerate(bounding_boxes):
x1, y1, x2, y2 = box
part = img[y1:y2, x1:x2]
#new_file_name = f"{count_usable_files}_leaf{j + 1}{extension}"
new_file_name = f"{count_usable_files}_leaf{j + 1}.png"
cv2.imwrite(os.path.join(file_path, new_file_name), part)
R_list.append(R)
P_list.append(P)
code_champ_list.append(code_champ)
M_list.append(M)
EPO_list.append(EPO)
labels_index.append(count_usable_files)
original_file_names.append(filename)
new_file_names.append(new_file_name)
count_usable_files += 1
# Create a DataFrame to store the results
results = pandas.DataFrame({
'Original_File_Name': original_file_names,
'New_File_Name': new_file_names,
'Label': labels_index,
'R': R_list,
'P': P_list,
'Code_Champ': code_champ_list,
'M': M_list,
'EPO': EPO_list
})
return results_path, file_path, unusable_file_path, labels_path, results, count_usable_files, count_unusable_files