Released 2021-07-15.
- Fix
load_checkpoint
interface bug in TinyMS 0.2.0 hub module. #96
Released 2021-06-07.
- Add
text
module to provide the basic dataset loading and preprocessing in NLP scenarios. #53 #73 - Upgrade the version of
mindspore
module dependencies fromv1.1.1
tov1.2.0
. #81 #84 - Refactor the
Client
andServer
communication interface inserving
module. #76 - Added server_path, start FlaskServer and add host and port parameters. #77
- Implement TinyMS
hub
module to enable loading lots of pre-trained models, incluidnglenet5_v1
,resnet50_v1
,alexnet_v1
,vgg16_v1
,mobilenet_v2
andssd300_v1
. #86 #93 - Publish the TinyMS Hub contributing guidelines in public to welcome pre-trained model from the comunity. #91
- Refactor the model network entrypoint method to provide the unified interface. #85
- Refactor the
serving
entrypoint function withClient
andServer
class interface.
v0.1.0 | v0.2.0 |
from tinyms.serving import start_server, server_started, list_servables, predict, shutdown
start_server()
if server_started():
list_servables()
predict('example.jpg', 'servable_name', dataset_name='mnist')
shutdown() |
from tinyms.serving import Client, Server
server = Server()
server.start_server()
client = Client()
client.list_servables()
client.predict('example.jpg', 'servable_name', dataset_name='mnist')
server.shutdown() |
- Add a new interface load in model module to support load MindIR graph directly to perform model inference operation.
v0.2.0 |
>>> import tinyms as ts
>>> import tinyms.layers as layers
>>> from tinyms.model import Model, load
>>>
>>> net = layers.Conv2d(1, 1, kernel_size=3)
>>> model = Model(net)
>>> input = ts.ones([1, 1, 3, 3])
>>> model.export(input, "net", file_format="MINDIR")
...
>>> net = load("net.mindir")
>>> print(net(input))
[[[[ 0.02548009 0.04010789 0.03120251]
[ 0.00268656 0.02353744 0.03807815]
[-0.00896441 -0.00303641 0.01502199]]]] |
- Add
hub.load
method to easily load pretrained model and apply model evaluation and inference operation.
v0.2.0 |
from PIL import Image
from tinyms import hub
from tinyms.vision import mnist_transform
from tinyms.model import Model
img = Image.open(img_path)
img = mnist_transform(img)
# load LeNet5 pretrained model
net= hub.load('tinyms/0.2/lenet5_v1_mnist', class_num=10)
model = Model(net)
res = model.predict(ts.expand_dims(ts.array(img), 0)).asnumpy()
print("The label is:", mnist_transform.postprocess(res)) |
For the detailed API changes, please find TinyMS Python API in API Documentation.
None
- Fix some bugs when serving in Windows operating system. #74
- Set
batch_norm
asTrue
by default in VGG16 to fix the converge problem of accuracy. #90
Great thanks go to these wonderful people:
@zjuter0126, @Mickls, @leonwanghui, @hannibalhuang, @hellowaywewe, @huxiaoman7
Released 2021-03-28.
- Design the overall framework of TinyMS development toolkit. #3 #5 #12 #13
- Support install TinyMS binary in
Linux Ubuntu 18.04
andWindow 10
environment, also provide TinyMS docker image to users. #2 #45 - Enable document auto-generation using Sphinx. #35
- Provide several end to end model development and deployment tutorials for machine learning beginners. #11 #24 #26 #34
- Set up the initial CI pipeline (including cla-assistant, GitHub Actions, readthedocs) for TinyMS project. #1 #49 #50
There is no API change for the first version of TinyMS. Please find TinyMS Python API in API Documentation.
None
None
Great thanks go to these wonderful people:
@leonwanghui, @lyd911, @hannibalhuang, @hellowaywewe, @Yikun, @huxiaoman7