-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmemory_manager.s
1045 lines (890 loc) · 29.5 KB
/
memory_manager.s
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Tim Henderson
# memory_manager.s a module to manage the OS memory use instead of the sbrk macro in sys_macros.m
# however we still need sbrk macro because this module relies on it.
# Structure of memory in spim
# -------------------------
# | Kernel Data | -> starts at 0x90000000
# -------------------------
# | Kernel Program | -> starts at 0x80000000
# -------------------------
# | | -> starts at 0x7fffffff
# | Stack |
# | | -> $fp denotes bottom of current stack frame
# ------------------------- -> $sp denotes top of stack
# | | |
# | \|/ |
# | |
# | |
# | free space |
# | |
# | |
# | /|\ |
# | | |
# -------------------------
# | |
# | Heap |
# | |
# ------------------------- -> sbrk syscall allocates memory in the heap
# | Static |
# ------------------------- -> $gp
# | User Data | -> starts at 0x10000000
# -------------------------
# | User Program | -> starts at 0x40000000
# -------------------------
# | Reserved | -> starts at 0x00000000
# -------------------------
# HOW THE MEMORY ALLOCATOR WILL WORK
# the memory allocator will be a way to manage the memory in the heap while the sbrk syscall
# allocates memory in the heap it cannot free memory. Thus the operating system needs a way
# to free and compact the heap when blocks of memory are released by either the OS or
# a user program.
#
# A program will request memory by asks for x number of words. the programs will not be able to
# request by number of bytes. The user programs will not get back the address of the memory instead
# they will get back a unique identifier for their memory. When they want a word from their memory,
# the programs will use a global macro that will be part of this library. ie they will pass the
# macro their memory id and the word they want (ie 0, 1, 2, 3 ... n) and the system will return the
# value of the word in from their memory block.
#
# The memory manager will allow users to free memory when they are done with it. When a piece of
# memory is free the heap will be compacted by the memory manager so that their will be no empty
# space. This is the reason that the user will never be given the address of their memory. The
# address will not remain constant so the users cannot have them.
#
# At the very top of the heap will be a control structure. in essance it will be a assending sorted
# list of memory blocks in use sorted by the memory id number. It will look like this.
#
# Structure of Heap Control Block(HCB)
# -------------------------------------
# | The Sorted List Inside the Block |
# | --------------------------------- |
# | | Size in Words of the Block | |
# | | Address of the Memory Block | |
# | | Memory id N | |
# | --------------------------------- |
# | --------------------------------- |
# | | | |
# | | ... | |
# | | | |
# | --------------------------------- |
# | --------------------------------- |
# | | Size in Words of the Block | |
# | | Address of the Memory Block | |
# | | Memory id 0 | |
# | --------------------------------- |
# -------------------------------------
# | Length of List | -> the length of the sorted list
# -------------------------------------
# | Freed Space in Words | -> How many words of free space are there above the HCB
# -------------------------------------
# | | -> ie what is the farthest the heap can grow with doing
# | Address of the Top of the Heap | another sbrk call. this includes the space that the
# | | Heap Control Block is occupying
# -------------------------------------
# | Next Memory id |
# -------------------------------------
# | Size in Words of Control Block | -> includes the first 5 words
# -------------------------------------
#
# The heap control block will grow in size as the number of blocks in the heap grows and it will
# shrink at as blocks of memory are free. There will be a special label called HCB_ADDR which will
# store the start of the heap control block. This will make it quicker to access the block. That
# way the memory manager doesn't have to walk the entire heap to get to the control block.
# Structure of Heap
# ------------------------------ -> Top of Heap
# | |
# | Freed Space |
# | |
# ------------------------------
# | -------------------------- |
# | | Heap Control Block(HCB)| |
# | -------------------------- | -> HCB_ADDR
# ------------------------------
# | Memory Block N |
# ------------------------------
# | Memory Block N-1 |
# ------------------------------
# | |
# | .... |
# | |
# ------------------------------
# | Memory Block 1 |
# ------------------------------
# | Memory Block 0 |
# ------------------------------ -> Bottom of Heap
# words_to_bytes words
# words : the number of words in a reg
#
# it puts the result in the same register you got it from
#define words_to_bytes local
mul %1 %1 4 # multiply the number of words by four and store in same reg
#end
# load_hcb hcb_addr
# loads the HCB into $s0 - $s5 see the comments for what is in what reg
#define load_hcb local
lw $s1 0(%1) # load the size_HCB into $s1
lw $s2 4(%1) # load the next_id into $s2
lw $s3 8(%1) # load the top into $s3
lw $s4 12(%1) # load the free into $s4
lw $s5 16(%1) # load the len_list into $s5
#end
# save_hcb hcb_addr
# save the HCB
# assumes the variables are in the same position that load_hcb left them
#define save_hcb local
sw $s1 0(%1) # save the size_HCB
sw $s2 4(%1) # save the next_id
sw $s3 8(%1) # save the top
sw $s4 12(%1) # save the free
sw $s5 16(%1) # save the len_list
#end
# calctop dst hcb_addr size_HCB amt_freed
# dst : the register you want the result stored in
# hcb_addr : a register with the addr of the hcb in it
# size_HCB : the size of the hcb in words it should be in a reg
# amt_freed : how much space above the control block is their in words also in reg
#
# calculates the addr of the top of the heap
# MODIFIES: size_HCB and amt_freed registers
#
#define calctop local
words_to_bytes %3 # multiply the size of the hcb by 4 and store in size
words_to_bytes %4 # multiply the amt of freed space by for and store in amt
addu %1 %2 %3 # add the size of the hcb to the addr
addu %1 %1 %4 # add amt to the addr
subu %1 %1 4 # subtract 4 to get the actual last addr
#end
.text
.globl initialize_heap
# initialize_heap(addr, len) --> Null
# start = the start address
# len = the length of the heap in words
# initializes the heap and put the addr of the HCB in HCB_ADDR
initialize_heap:
{
@hcb_addr = $s0
@heap_len = $s1
@hcb_len = $s2
addu @hcb_addr $a0 $0
addu @heap_len $a1 $0 # length of heap into @heap_len
println_hex addr_msg @hcb_addr
li @hcb_len 5 # the HCB start out as five words long
sw @hcb_len 0(@hcb_addr) # store the size of HCB in words in the HCB
{
@mem_id = $t1
li @mem_id 0x0 # the first memory id is one
sw @mem_id 4(@hcb_addr) # store the next memory id in the HCB
}
@free = $t1
sub @free @heap_len @hcb_len # subtract the size of the hcb from the size of the heap
sw @free 12(@hcb_addr)
@top = $t0
calctop @top @hcb_addr @hcb_len @free # calculate the addr at the top of the heaps
sw @top 8($s0) # put the top into the HCB
sw $0 16($s0) # the intial size of the list is 0 so store it in the HCB
return
.data
addr_msg: .asciiz " init_heap addr: "
.text
}
.text
# add_to_hcb(mem_addr, mem_size, hcb_addr) --> $v0 = mem_id
.globl add_hcb_item
add_hcb_item:
{
@hcb_addr = $s0
@hcb_size = $s1
@hcb_next_id = $s2
@hcb_top = $s3
@hcb_free = $s4
@hcb_len_list = $s5
@mem_addr = $s6
@mem_size = $s7
@mem_id = $t1
@end_list = $t0
addu @mem_addr $a0 $0
addu @mem_size $a1 $0
addu @hcb_addr $a2 $0
load_hcb @hcb_addr
addu @mem_id @hcb_next_id $0
addu @hcb_next_id @hcb_next_id 1 # next_id += 1
addu @hcb_len_list @hcb_len_list 1 # len_list += 1
addu @end_list @hcb_size $0 # move size_HCB into $t0
addu @hcb_size @hcb_size 3 # size_HCB += 3
subu @hcb_free @hcb_free 3
sll @end_list @end_list 2
# add the size of the hcb to the addr
addu @end_list @hcb_addr @end_list
save_hcb @hcb_addr
sw @mem_id 0(@end_list) # sw mem_id 0(end_list)
sw @mem_addr 4(@end_list) # sw addr 4(end_list)
sw @mem_size 8(@end_list) # sw size 8(end_list)
addu $v0 @mem_id $0 # return mem_id
return
.data
addr_msg: .asciiz " addhcb -> addr = "
amt_msg: .asciiz " addhcb -> amt = "
size_msg: .asciiz " addhcb -> size = "
.text
}
# get_hcb_item(index, hcb_addr) --> $v0 = addr, $v1 = error
# index : the index the element you want
# addr : the address of the element
# error : 0 if not error, error number otherwise
get_hcb_item:
{
@hcb_addr = $s0
@hcb_size = $s1
@hcb_next_id = $s2
@hcb_top = $s3
@hcb_free = $s4
@hcb_len_list = $s5
@index = $s7
@i_byte = $t0
@temp = $t1
add @index $a0 $0 # $s7 = index
addu @hcb_addr $a1 $0
load_hcb @hcb_addr
ble @index @hcb_len_list index_in_list
#index not in list
add $v0 $0 $0 # addr = 0
addi $v1 $0 1 # error = 1
j end
index_in_list:
mul @temp @index 3 # because the item size is 3 words
addi @i_byte @temp 5 # i_bytes = index + 5
sll @i_byte @i_byte 2 # mul by 4
add $v0 @hcb_addr @i_byte # addr = hcb_addr + i_bytes
add $v1 $0 $0 # error = 0 (success!)
end:
return
}
# del_hcb_item(index, addr) --> $v0 = error
# mem_id : the mem_id you want to remove from the list
# error : 0 if success error code otherwise
del_hcb_item:
{
# load_hcb
# to_addr, err = \
# get_hcb_list_elem(mem_id)
# if err: jump get_hcb_list_elem_error
# from_addr = to_addr + 3*4
# hcbtop last_addr HCB_ADDR size_HCB
# while (from_addr <= last_addr)
# {
# lw temp 0(from_addr)
# sw temp 0(to_addr)
# from_addr += 4
# to_addr += 4
# }
# len_list -= 1
# size_HCB -= 3
# free += 3
# save_hcb
@hcb_addr = $s0
@hcb_size = $s1
@hcb_next_id = $s2
@hcb_top = $s3
@hcb_free = $s4
@hcb_len_list = $s5
@item_size = $s6
@index = $s7
@to_addr = $t0
@from_addr = $t1
@last_addr = $t2
@temp = $t3
addu @index $a0 $0 # put the index into $s7
addu @hcb_addr $a1 $0
addu $a0 @index $0
call get_hcb_item
# if err: jump del_hcb_list_elem_error
bne $v1 $0 del_hcb_list_elem_error
addu @to_addr $v0 $0 # to_addr = $t0
lw @item_size 8(@to_addr)
load_hcb @hcb_addr
addu @from_addr @to_addr 12 # from_addr = to_addr + 3*4
sll @last_addr @hcb_size 2
addu @last_addr @hcb_addr @last_addr
loop:
# if from_addr > last_addr: jump del_hcb_list_elem_loop_end
beq @from_addr @last_addr loop_end
lw @temp 0(@from_addr) # lw temp 0(from_addr)
sw @temp 0(@to_addr) # sw temp 0(to_addr)
addu @from_addr @from_addr 4 # from_addr += 4
addu @to_addr @to_addr 4 # to_addr += 4
j loop
loop_end:
subu @hcb_len_list @hcb_len_list 1 # len_list -= 1
subu @hcb_size @hcb_size 3 # size_HCB -= 3
addu @hcb_free @hcb_free 3 # free += 3
addu @hcb_free @hcb_free @item_size
save_hcb @hcb_addr
add $v0 $0 $0 # error = 0 success!
return
.data
del_error_msg: .asciiz "del error"
del_index_msg: .asciiz "del index = "
hcb_addr_start_msg: .asciiz "HCB address start_addr = "
hcb_addr_end_msg: .asciiz "HCB address end_addr = "
index_addr_msg: .asciiz "Index address = "
new_index_msg: .asciiz "new index = "
old_index_msg: .asciiz "old index = "
msg: .asciiz "here"
.text
del_hcb_list_elem_error:
la $a0 del_error_msg
call println
addi $v0 $0 1 # move error = 1 to output
j end
end:
return
}
# move_hcb_up(amt, addr) --> $v0 = new_addr
# amt : amt you want to move the HCB up in words
# moves the HCB up by amt in words
# save the new location of HCB in HCB_ADDR
.text
.globl move_hcb_up
move_hcb_up:
{
# while (hcb_addr <= move_from_addr)
# {
# move_to_addr = move_to_addr+4
# lw temp 0(move_from_addr)
# sw temp 0(move_to_addr)
# move_from_addr = move_from_addr-4
# }
# sw move_to_addr HCB_ADDR
@hcb_addr = $s0
@amt = $s7
@move_from = $s1
@move_to = $s2
@temp = $s3
addu @amt $a0 $0 # move the amt to $s7
addu @hcb_addr $a1 $0
sll @amt @amt 2 # multiply the amt by 4
load_hcb @hcb_addr
addu @move_from $s1 0x0
sll @move_from @move_from 2
addu @move_from @hcb_addr @move_from
addu @move_to @move_from @amt
addu @move_to @move_to 0x4
loop:
# if hcb_addr < move_from_addr: jump loop_end
bgt @hcb_addr @move_from loop_end
subu @move_to @move_to 4
lw @temp 0(@move_from)
sw @temp 0(@move_to)
subu @move_from @move_from 4
j loop
loop_end:
addu $v0 @move_to $0
return
.data
amt_msg: .asciiz "amount = "
.text
}
.text
.globl compact
# # compact (mem_id, hole_addr, hole_size, hcb_addr) --> new_hcb_addr
compact:
{
@hcb_addr = $s0
@hcb_size = $s1
@from_addr = $s2
@to_addr = $s3
@last_addr = $s4
@count = $s5
@hole_addr = $s6
@hole_size = $s7
@temp = $t0
@count_temp = $t1
@x = $t2
@remainder = $t3
@temp_addr = $t4
@memid_loc = $t8
@mem_id = $t9
addu @mem_id $a0 $0
addu @hole_addr $a1 $0 # $s6 = hole_addr
addu @hole_size $a2 $0 # $s7 = hole_size
addu @hcb_addr $a3 $0
li $t8 0x1
init_varstore $t8
li @memid_loc 0x1
var_store @memid_loc @mem_id
# println_hex hole_size_msg @hole_size
# println_hex hole_addr_msg @hole_addr
# println_hex hcb_addr_msg @hcb_addr
load_hcb @hcb_addr # load the control block
sll @hole_size @hole_size 2
addu @from_addr @hole_size $0 # move hole_size into $t0
addu @from_addr @from_addr @hole_addr
addu @to_addr @hole_addr $0 # to_addr = $t1
#calculate the top of hcb
addu @last_addr @hcb_size $0 # move size_HCB into $t2
sll @last_addr @last_addr 2
addu @last_addr @hcb_addr @last_addr
addu @count $0 $0
# println_hex count_msg @count
# println_hex from_addr_msg @from_addr
# println_hex to_addr_msg @to_addr
# println_hex last_addr_msg @last_addr
{
loop:
# if from_addr > last_addr: jump compact_loop_end
bgt @from_addr @last_addr loop_end
lw @temp 0(@from_addr) # lw temp 0(from_addr)
sw @temp 0(@to_addr) # sw temp 0(to_addr)
# if (from_addr == hcb_addr)
{
bne @from_addr @hcb_addr endif
addu @hcb_addr @to_addr $0 # hcb_addr = to_addr
endif:
}
addu @x $0 0x5
{
ble @count @x endif
subu @count_temp @count @x
addu @x $0 0x3
div @count_temp @x
mfhi @remainder
addu @x $0 0x1
bne @remainder @x endif
subu @temp_addr @to_addr 0x4
lw @temp 0(@temp_addr) #load the mem_id
li @memid_loc 0x1
var_restore @mem_id @memid_loc
blt @temp @mem_id endif
lw @temp 0(@to_addr)
subu @temp @temp @hole_size
sw @temp 0(@to_addr)
endif:
}
addu @to_addr @to_addr 4 # to_addr += 4
addu @from_addr @from_addr 4 # from_addr += 4
{
ble @to_addr @hcb_addr endif
addu @count @count 0x1
endif:
}
# println_hex count_msg @count
# println_hex from_addr_msg @from_addr
# println_hex to_addr_msg @to_addr
# println_hex last_addr_msg @last_addr
j loop
loop_end:
}
addu $v0 @hcb_addr $0
return
.data
hcb_addr_msg: .asciiz "hcb_addr = "
hole_addr_msg: .asciiz "hole_addr = "
hole_size_msg: .asciiz "hole_size = "
to_addr_msg: .asciiz "to_addr = "
from_addr_msg: .asciiz "from_addr = "
last_addr_msg: .asciiz "last_addr = "
count_msg: .asciiz "\ncount = "
.text
}
# find_index(mem_id, addr) --> $v0 = found?, $v2 = index if found
# mem_id : the memory_id you want to find the addr
# found? : zero if not found one if found
# index : the index in the hcb list of that mem_id's control block
.text
.globl find_index
find_index:
{
@l = $s0
@r = $s1
@m = $s2
@cur_id = $s3
@item_addr = $s4
@len = $s5
@hcb_addr = $s6
@mem_id = $s7
@err = $v1
addu @mem_id $a0 $0
addu @hcb_addr $a1 $0
load_hcb @hcb_addr
add @l $0 $0 # l = 0
add @r @len $0 # r = len_list
loop:
# if l > r: jump find_index_loop_end
bgt @l @r loop_end
sub @m @r @l # m = r - l
sra @m @m 1 # div m by 2
add @m @m @l # m = m + l
addu $a0 @m $0
addu $a1 @hcb_addr $0
call get_hcb_item
addu @item_addr $v0 $0
bne @err $0 loop_end
lw @cur_id 0(@item_addr)
# if cur_id == mem_id
beq @cur_id @mem_id index_found
# if cur_id > mem_id: jump find_index_val_gt_mem_id
bgt @cur_id @mem_id curid_gt_memid
# else: cur_id < mem_id
addi @l @m 1 # l = m + 1
j loop
curid_gt_memid:
sub @r @m 1 # r = m - 1
j loop
index_found:
addu $v0 $0 1 # found = 1
addu $v1 @m $0 # return index = m
return
loop_end:
add $v0 $0 $0 # found = 0
add $v1 $0 $0 # index = 0
return
.data
start_msg: .asciiz "find index start"
m_msg: .asciiz "m = "
id_msg: .asciiz "id = "
cid_msg: .asciiz "cid = "
mem_id_msg: .asciiz "mem_id = "
bigger_msg: .asciiz "cid is bigger than m"
smaller_msg: .asciiz "cid is smaller than m"
len_msg: .asciiz "length of list = "
found_msg: .asciiz "found!!"
notfound_msg: .asciiz "not found :'("
.text
}
.text
.globl alloc
# alloc(amt, addr) --> $v0 = mem_id, $v1 = hcb_addr
# amt : the amount in words of memory you are requesting
# mem_id : the id you will use to access your memory
alloc:
{
## PSUEDOCODE for this function
# size_hcb_bytes = size_HCB
# words_to_bytes size_hcb_bytes
# end_list = HCB_ADDR + size_hcb_bytes
#
# if free < amt:
# amt_requested = 3 + amt - free
# free = 0
# else if free >= amt:
# amt_requested = 0
# free = free - amt
# top = top + amt_requested
# save_hcb
#
# if amt_requested != 0: raise error
#
# $s6 = add_hcb_list_elem(HCB_ADDR, amt)
#
# move_hcb_up(amt)
#
# return $s6
@hcb_addr = $s0
@hcb_size = $s1
@hcb_next_id = $s2
@hcb_top = $s3
@hcb_free = $s4
@hcb_len_list = $s5
@mem_id = $s6
@amt = $s7
addu @amt $a0 $0 # move the amt to $s7
addu @hcb_addr $a1 $0
# println start_msg
load_hcb @hcb_addr # load the HCB into $s0 - $s5 see macro
blt @hcb_free @amt alloc_free_lt_amt
# # if free < amt: jump alloc_free_lt_amt
@amt_requested = $t1
addu @amt_requested $0 $0
subu @hcb_free @hcb_free @amt # free = free - amt
j alloc_end_if
alloc_free_lt_amt:
addu @amt_requested @amt 3 # amt_requested = 3 + amt
subu @amt_requested @amt_requested @hcb_free
addu @hcb_free $0 $0 # free = 0
alloc_end_if:
addu @hcb_top @hcb_top $t1 # top = top + amt_requested #top = $s3
bne @amt_requested $0 error # if amt_requested != 0: jump error
save_hcb @hcb_addr
addu $a0 @hcb_addr $0
addu $a1 @amt $0
addu $a2 @hcb_addr $0
call add_hcb_item
addu @mem_id $v0 $0
addu $a0 @amt $0
addu $a1 @hcb_addr $0
call move_hcb_up
addu @hcb_addr $v0 $0
addu $v0 @mem_id $0
addu $v1 @hcb_addr $0
return
error:
la $a0 error_msg
call println
exit
.data
.globl start_msg
error_msg: .asciiz "Out of memory.\n"
start_msg: .asciiz "start alloc.\n"
addr_msg: .asciiz "->addr = "
.text
}
.text
# free(mem_id, hcb_addr) --> $v0 = hcb_addr
free:
{
@hcb_addr = $s0
@mem_id = $s1
@item_addr = $s2
@found = $s5
@index = $s6
@hole_size = $t3
@hole_addr = $t5
@err = $t4
addu @mem_id $a0 $0
addu @hcb_addr $a1 $0
# println_hex mem_id_msg @mem_id
addu $a0 @mem_id $0
addu $a1 @hcb_addr $0
call find_index
addu @found $v0 $0
addu @index $v1 $0
# println_hex found_msg @found
# println_hex index_msg @index
beq @found $0 index_not_found
addu $a0 @index $0
addu $a1 @hcb_addr $0
call get_hcb_item
addu @item_addr $v0 $0
addu @err $v1 $0
bne @err $0 get_hcb_error
# println_hex err_equal_msg @err
# addu $a0 @item_addr $0
# call print_hcb_item
lw @hole_addr 4(@item_addr)
lw @hole_size 8(@item_addr)
addu $a0 @mem_id $0
addu $a1 @hole_addr $0
addu $a2 @hole_size $0
addu $a3 @hcb_addr $0
call compact
addu @hcb_addr $v0 $0
# print_hcb @hcb_addr
addu $a0 @index $0
addu $a1 @hcb_addr $0
call del_hcb_item
addu @err $v0 $0
bne @err $0 del_hcb_error
# println_hex err_equal_msg @err
# print_hcb @hcb_addr
addu $v0 @hcb_addr $0
return
get_hcb_error:
la $a0 error_msg2
call println
addu $v0 @hcb_addr $0
return
del_hcb_error:
la $a0 error_msg3
call println
addu $v0 @hcb_addr $0
return
index_not_found:
la $a0 error_msg
call println
addu $v0 @hcb_addr $0
return
.data
error_msg: .asciiz "Index not found\n"
error_msg2: .asciiz "Error in get hcb item\n"
error_msg3: .asciiz "Error in del hcb item\n"
index_msg: .asciiz "index = "
id_msg: .asciiz "id = "
amt_msg: .asciiz "amt = "
freed_msg: .asciiz "freed\n"
addr_msg: .asciiz "addr = "
err_equal_msg: .asciiz " error = "
found_msg: .asciiz " found = "
mem_id_msg: .asciiz " mem_id = "
.text
}
.text
.globl __getword
# __getword(loc, mem_id, hcb_addr) --> $v0 = error, $v1 = val
__getword:
{
@hcb_addr = $s0
@mem_id = $s1
@loc = $s2
@index = $s3
@item_addr = $s4
@block_size = $s5
@word_addr = $s6
@found = $t0
@err = $t1
@value = $t2
addu @loc $a0 $0
addu @mem_id $a1 $0
addu @hcb_addr $a2 $0
addu $a0 @mem_id $0
addu $a1 @hcb_addr $0
call find_index
addu @found $v0 $0
addu @index $v1 $0
beq @found $0 index_not_found
addu $a0 @index $0
addu $a1 @hcb_addr $0
call get_hcb_item
addu @item_addr $v0 $0
addu @err $v1 $0
bne @err $0 get_hcb_error
lw @block_size 8(@item_addr)
bge @loc @block_size loc_error
blt @loc $0 loc_error
sll @loc @loc 2 #mul by 4
lw @word_addr 4(@item_addr)
addu @word_addr @word_addr @loc
lw @value 0(@word_addr)
addu $v0 $0 $0 #error = 0
addu $v1 @value $0
return
index_not_found:
la $a0 error_msg
call println
addu $v0 $0 0x1
addu $v1 $0 $0
return
get_hcb_error:
la $a0 error_msg2
call println
addu $v0 $0 0x2
addu $v1 $0 $0
return
loc_error:
la $a0 error_msg3
call println
addu $v0 $0 0x3
addu $v1 $0 $0
return
.data
error_msg: .asciiz "Memory id not found\n"
error_msg2: .asciiz "Error in get hcb item\n"
error_msg3: .asciiz "location not in range 0-(n-1)\n"
.text
}
.text
.globl __putword
# __putword(value, loc, mem_id, hcb_addr) --> $v0 = error
__putword:
{
@hcb_addr = $s0
@mem_id = $s1
@loc = $s2
@index = $s3
@item_addr = $s4
@block_size = $s5
@word_addr = $s6
@value = $s7
@found = $t0
@err = $t1
addu @value $a0 $0
addu @loc $a1 $0
addu @mem_id $a2 $0
addu @hcb_addr $a3 $0
addu $a0 @mem_id $0
addu $a1 @hcb_addr $0
call find_index
addu @found $v0 $0
addu @index $v1 $0
beq @found $0 index_not_found
addu $a0 @index $0
addu $a1 @hcb_addr $0
call get_hcb_item
addu @item_addr $v0 $0
addu @err $v1 $0
bne @err $0 get_hcb_error
lw @block_size 8(@item_addr)
bge @loc @block_size loc_error
blt @loc $0 loc_error
sll @loc @loc 2 #mul by 4
lw @word_addr 4(@item_addr)
addu @word_addr @word_addr @loc
sw @value 0(@word_addr)
addu $v0 $0 $0 #error = 0
addu $v1 @value $0
return
index_not_found:
la $a0 error_msg
call println
addu $v0 $0 0x1
addu $v1 $0 $0
return
get_hcb_error:
la $a0 error_msg2
call println
addu $v0 $0 0x2
addu $v1 $0 $0
return
loc_error:
la $a0 error_msg3
call println
addu $v0 $0 0x3
addu $v1 $0 $0
return
.data
error_msg: .asciiz "Memory id not found\n"
error_msg2: .asciiz "Error in get hcb item\n"
error_msg3: .asciiz "location not in range 0-(n-1)\n"
word_addr_msg: .asciiz "word address = "
.text
}
.text
.globl blocksize
# blocksize(mem_id, hcb_addr) --> $v0 = error, $v1 = size
blocksize:
{
@hcb_addr = $s0
@mem_id = $s1
@loc = $s2
@index = $s3
@item_addr = $s4
@block_size = $s5
@word_addr = $s6
@found = $t0
@err = $t1
@value = $t2
addu @loc $a0 $0
addu @mem_id $a1 $0