From 8e7d1a4806510df7aded37a6ae05cd9d0f3faafd Mon Sep 17 00:00:00 2001 From: ktro2828 Date: Wed, 28 Sep 2022 18:50:58 +0900 Subject: [PATCH] feat(prediction): add support of prediction interface Signed-off-by: ktro2828 --- .../perception_eval/common/dataset.py | 83 ++++++++-- .../perception_eval/common/object.py | 143 ++++++++++++++++-- .../metrics/metrics_score_config.py | 8 +- perception_eval/test/perception_lsim.py | 6 +- 4 files changed, 207 insertions(+), 33 deletions(-) diff --git a/perception_eval/perception_eval/common/dataset.py b/perception_eval/perception_eval/common/dataset.py index 209f32d3..a1dc7f26 100644 --- a/perception_eval/perception_eval/common/dataset.py +++ b/perception_eval/perception_eval/common/dataset.py @@ -86,6 +86,7 @@ def load_all_datasets( evaluation_task: EvaluationTask, label_converter: LabelConverter, frame_id: str, + path_seconds: float = 10.0, ) -> List[FrameGroundTruth]: """ Load tier4 datasets. @@ -94,6 +95,8 @@ def load_all_datasets( does_use_pointcloud (bool): The flag of setting pointcloud evaluation_tasks (EvaluationTask): The evaluation task label_converter (LabelConverter): Label convertor + frame_id (str): Objects' frame ID. + path_seconds (float): Time length of path in seconds. Defaults to 10.0. Reference https://github.com/nutonomy/nuscenes-devkit/blob/master/python-sdk/nuscenes/eval/common/loaders.py @@ -112,6 +115,7 @@ def load_all_datasets( evaluation_task=evaluation_task, label_converter=label_converter, frame_id=frame_id, + path_seconds=path_seconds, ) logger.info("Finish loading dataset\n" + _get_str_objects_number_info(label_converter)) return all_datasets @@ -123,6 +127,7 @@ def _load_dataset( evaluation_task: EvaluationTask, label_converter: LabelConverter, frame_id: str, + path_seconds: float = 10.0, ) -> List[FrameGroundTruth]: """ Load one tier4 dataset. @@ -131,6 +136,8 @@ def _load_dataset( does_use_pointcloud (bool): The flag of setting pointcloud evaluation_tasks (EvaluationTask): The evaluation task label_converter (LabelConverter): Label convertor + frame_id (str): Objects' frame ID. + path_seconds (float): Time length of path in seconds. Defaults to 10.0. Reference https://github.com/nutonomy/nuscenes-devkit/blob/master/python-sdk/nuscenes/eval/common/loaders.py @@ -164,6 +171,7 @@ def _load_dataset( label_converter=label_converter, frame_id=frame_id, frame_name=str(n), + path_seconds=path_seconds, ) dataset.append(frame) return dataset @@ -229,6 +237,7 @@ def _sample_to_frame( label_converter: LabelConverter, frame_id: str, frame_name: str, + path_seconds: float, ) -> FrameGroundTruth: """[summary] Convert Nuscenes sample to FrameGroundTruth @@ -240,7 +249,9 @@ def _sample_to_frame( does_use_pointcloud (bool): The flag of setting pointcloud evaluation_tasks (EvaluationTask): The evaluation task label_converter (LabelConverter): Label convertor + frame_id (str): Objects' frame ID. frame_name (str): Name of frame, number of frame is used. + path_seconds (float): Time length of path in seconds. Raises: NotImplementedError: @@ -293,6 +304,7 @@ def _sample_to_frame( label_converter=label_converter, instance_token=instance_token_, sample_token=sample_token, + path_seconds=path_seconds, visibility=visibility, ) objects_.append(object_) @@ -318,8 +330,8 @@ def _convert_nuscenes_box_to_dynamic_object( label_converter: LabelConverter, instance_token: str, sample_token: str, - visibility: Optional[Visibility] = None, - seconds: float = 3.0, + path_seconds: float, + visibility: Visibility, ) -> DynamicObject: """[summary] Convert nuscenes object bounding box to dynamic object @@ -333,8 +345,8 @@ def _convert_nuscenes_box_to_dynamic_object( label_converter (LabelConverter): LabelConverter instance_token (str): Instance token sample_token (str): Sample token, used to get past/future record + path_seconds (float): Seconds to be referenced past/future record. visibility (Optional[Visibility]): Visibility status. Defaults to None. - seconds (float): Seconds to be referenced past/future record Returns: DynamicObject: Converted dynamic object class @@ -354,6 +366,7 @@ def _convert_nuscenes_box_to_dynamic_object( nusc.box_velocity(sample_annotation_["token"]).tolist() ) + # TODO: refactoring following codes if evaluation_task == EvaluationTask.TRACKING: ( tracked_positions, @@ -366,7 +379,7 @@ def _convert_nuscenes_box_to_dynamic_object( frame_id=frame_id, instance_token=instance_token, sample_token=sample_token, - seconds=seconds, + seconds=path_seconds, ) else: tracked_positions = None @@ -375,7 +388,30 @@ def _convert_nuscenes_box_to_dynamic_object( tracked_velocities = None if evaluation_task == EvaluationTask.PREDICTION: - pass + ( + predicted_positions, + predicted_orientations, + predicted_sizes, + predicted_velocities, + ) = _get_prediction_data( + nusc=nusc, + helper=helper, + frame_id=frame_id, + instance_token=instance_token, + sample_token=sample_token, + seconds=path_seconds, + ) + predicted_positions = [predicted_positions] + predicted_orientations = [predicted_orientations] + predicted_sizes = [predicted_sizes] + predicted_velocities = [predicted_velocities] + predicted_confidences = [1.0] + else: + predicted_positions = None + predicted_orientations = None + predicted_sizes = None + predicted_velocities = None + predicted_confidences = None dynamic_object = DynamicObject( unix_time=unix_time, @@ -390,7 +426,12 @@ def _convert_nuscenes_box_to_dynamic_object( tracked_positions=tracked_positions, tracked_orientations=tracked_orientations, tracked_sizes=tracked_sizes, - tracked_twists=tracked_velocities, + tracked_velocities=tracked_velocities, + predicted_positions=predicted_positions, + predicted_orientations=predicted_orientations, + predicted_sizes=predicted_sizes, + predicted_velocities=predicted_velocities, + predicted_confidences=predicted_confidences, visibility=visibility, ) return dynamic_object @@ -506,24 +547,46 @@ def _get_prediction_data( frame_id: str, instance_token: str, sample_token: str, - seconds: str, + seconds: float, ): """Get prediction data with PredictHelper.get_future_for_agent() - Args: nusc (NuScenes): NuScenes instance. helper (PredictHelper): PredictHelper instance. instance_token (str): The unique token to access to instance. sample_token (str): The unique token to access to sample. seconds (float): Seconds to be referenced.[s] - Returns: future_positions (List[Tuple[float, float, float]]) future_orientations (List[Tuple[float, float, float]]) future_sizes (List[Tuple[float, float, float]]) future_velocities (List[Tuple[float, float, float]]) """ - pass + if frame_id == "base_link": + in_agent_frame: bool = True + elif frame_id == "map": + in_agent_frame: bool = False + else: + raise ValueError(f"Unexpected frame_id: {frame_id}") + + future_records_: List[Dict[str, Any]] = helper.get_future_for_agent( + instance_token=instance_token, + sample_token=sample_token, + seconds=seconds, + in_agent_frame=in_agent_frame, + just_xy=False, + ) + future_positions: List[Tuple[float, float, float]] = [] + future_orientations: List[Quaternion] = [] + future_sizes: List[Tuple[float, float, float]] = [] + future_velocities: List[Tuple[float, float, float]] = [] + for record_ in future_records_: + future_positions.append(tuple(record_["translation"])) + future_orientations.append(Quaternion(record_["rotation"])) + future_sizes.append(record_["size"]) + future_velocities.append(nusc.box_velocity(record_["token"])) + + return future_positions, future_orientations, future_sizes, future_velocities def get_now_frame( diff --git a/perception_eval/perception_eval/common/object.py b/perception_eval/perception_eval/common/object.py index 6c9420bf..67d269b9 100644 --- a/perception_eval/perception_eval/common/object.py +++ b/perception_eval/perception_eval/common/object.py @@ -19,6 +19,7 @@ from typing import List from typing import Optional from typing import Tuple +from typing import Union import numpy as np from perception_eval.common.label import AutowareLabel @@ -58,6 +59,45 @@ def __init__( self.velocity: Tuple[float, float, float] = velocity +class ObjectPath: + """[summary]""" + + def __init__(self, states: List[ObjectState], confidence: float) -> None: + self.states: List[ObjectState] = states + self.confidence: float = confidence + + def __getitem__(self, idx: int) -> Union[ObjectState, List[ObjectState]]: + """[summary] + Returns Nth state. + + Args: + idx (int) + + Returns: + Union[ObjectState, List[ObjectState]] + """ + return self.states[idx] + + def __iter__(self) -> ObjectPath: + self.__n = 0 + return self + + def __next__(self): + if self.__n < len(self): + self.__n += 1 + return self[self.__n - 1] + raise StopIteration + + def __len__(self) -> int: + """[summary] + Returns length of states. + + Returns: + int: length of states. + """ + return len(self.states) + + class DynamicObject: """ Dynamic object class @@ -98,12 +138,12 @@ def __init__( tracked_positions: Optional[List[Tuple[float, float, float]]] = None, tracked_orientations: Optional[List[Quaternion]] = None, tracked_sizes: Optional[List[Tuple[float, float, float]]] = None, - tracked_twists: Optional[List[Tuple[float, float, float]]] = None, - predicted_positions: Optional[List[Tuple[float, float, float]]] = None, - predicted_orientations: Optional[List[Quaternion]] = None, - predicted_sizes: Optional[List[Tuple[float, float, float]]] = None, - predicted_twists: Optional[List[Tuple[float, float, float]]] = None, - predicted_confidence: Optional[float] = None, + tracked_velocities: Optional[List[Tuple[float, float, float]]] = None, + predicted_positions: Optional[List[List[Tuple[float, float, float]]]] = None, + predicted_orientations: Optional[List[List[Quaternion]]] = None, + predicted_sizes: Optional[List[List[Tuple[float, float, float]]]] = None, + predicted_velocities: Optional[List[List[Tuple[float, float, float]]]] = None, + predicted_confidences: Optional[List[float]] = None, visibility: Optional[Visibility] = None, ) -> None: """[summary] @@ -135,7 +175,7 @@ def __init__( The list of bounding box size for predicted object. Defaults to None. predicted_twists (Optional[List[Tuple[float, float, float]]], optional): The list of twist for predicted object. Defaults to None. - predicted_confidence (Optional[float], optional): Prediction score. Defaults to None. + predicted_confidences (Optional[float], optional): Prediction score. Defaults to None. visibility (Optional[Visibility]): Visibility status. Defaults to None. """ @@ -156,20 +196,20 @@ def __init__( # tracking self.uuid: Optional[str] = uuid - self.tracked_path: Optional[List[ObjectState]] = DynamicObject._set_states( + self.tracked_path: Optional[List[ObjectState]] = set_object_states( positions=tracked_positions, orientations=tracked_orientations, sizes=tracked_sizes, - twists=tracked_twists, + velocities=tracked_velocities, ) # prediction - self.predicted_confidence: Optional[float] = predicted_confidence - self.predicted_path: Optional[List[ObjectState]] = DynamicObject._set_states( + self.predicted_paths: Optional[List[ObjectPath]] = set_object_paths( positions=predicted_positions, orientations=predicted_orientations, sizes=predicted_sizes, - twists=predicted_twists, + velocities=predicted_velocities, + confidences=predicted_confidences, ) self.visibility: Optional[Visibility] = visibility @@ -507,3 +547,82 @@ def distance_objects_bev(object_1: DynamicObject, object_2: DynamicObject) -> fl Returns: float: The 2d center distance from object_1 to object_2. """ return distance_points_bev(object_1.state.position, object_2.state.position) + + +def set_object_states( + positions: Optional[List[Tuple[float, float, float]]] = None, + orientations: Optional[List[Quaternion]] = None, + sizes: Optional[List[Tuple[float, float, float]]] = None, + velocities: Optional[List[Tuple[float, float, float]]] = None, +) -> Optional[ObjectPath]: + """[summary] + Set list of object states. + """ + if positions is None or orientations is None: + return None + + assert len(positions) == len(orientations), ( + "length of positions and orientations must be same, " + f"but got {len(positions)} and {len(orientations)}" + ) + states: List[ObjectState] = [] + for i, (pos, orient) in enumerate(zip(positions, orientations)): + states.append( + ObjectState( + position=pos, + orientation=orient, + size=sizes[i] if sizes else None, + velocity=velocities[i] if velocities else None, + ) + ) + return states + + +def set_object_path( + positions: Optional[List[Tuple[float, float, float]]] = None, + orientations: Optional[List[Quaternion]] = None, + sizes: Optional[List[Tuple[float, float, float]]] = None, + velocities: Optional[List[Tuple[float, float, float]]] = None, + confidence: Optional[float] = None, +) -> Optional[ObjectPath]: + """[summary] + Set single path. + """ + states: Optional[List[ObjectState]] = set_object_states( + positions=positions, + orientations=orientations, + velocities=velocities, + sizes=sizes, + ) + return ObjectPath(states, confidence) if states else None + + +def set_object_paths( + positions: Optional[List[List[Tuple[float, float, float]]]] = None, + orientations: Optional[List[List[Quaternion]]] = None, + sizes: Optional[List[List[Tuple[float, float, float]]]] = None, + velocities: Optional[List[List[Tuple[float, float, float]]]] = None, + confidences: Optional[List[float]] = None, +) -> Optional[List[ObjectPath]]: + """[summary] + Set multiple paths. + """ + if positions is None or orientations is None: + return None + + assert len(positions) == len(orientations), ( + "length of positions and orientations must be same, " + f"but got {len(positions)} and {len(orientations)}" + ) + paths: List[ObjectPath] = [] + for i, (poses, orients) in enumerate(zip(positions, orientations)): + paths.append( + set_object_path( + positions=poses, + orientations=orients, + velocities=velocities[i] if velocities else None, + sizes=sizes[i] if sizes else None, + confidence=confidences[i] if confidences else None, + ) + ) + return paths diff --git a/perception_eval/perception_eval/evaluation/metrics/metrics_score_config.py b/perception_eval/perception_eval/evaluation/metrics/metrics_score_config.py index 18cd2fb2..1479ac1a 100644 --- a/perception_eval/perception_eval/evaluation/metrics/metrics_score_config.py +++ b/perception_eval/perception_eval/evaluation/metrics/metrics_score_config.py @@ -47,9 +47,7 @@ def __init__(self, evaluation_task: EvaluationTask, **cfg) -> None: """ self.detection_config: Optional[DetectionMetricsConfig] = None self.tracking_config: Optional[TrackingMetricsConfig] = None - - # NOTE: prediction_config is under construction - self.prediction_config = None + self.prediction_config: Optional[PredictionMetricsConfig] = None self.evaluation_task: EvaluationTask = evaluation_task self.target_labels: List[AutowareLabel] = cfg["target_labels"] @@ -64,9 +62,7 @@ def __init__(self, evaluation_task: EvaluationTask, **cfg) -> None: self.detection_config = DetectionMetricsConfig(**cfg) elif self.evaluation_task == EvaluationTask.PREDICTION: self._check_parameters(PredictionMetricsConfig, cfg) - raise NotImplementedError("Prediction config is under construction") - # TODO - # self.evaluation_tasks.append(task) + self.prediction_config = PredictionMetricsConfig(**cfg) else: raise KeyError(f"Unsupported perception evaluation task: {self.evaluation_task}") diff --git a/perception_eval/test/perception_lsim.py b/perception_eval/test/perception_lsim.py index 77a4cebd..b7733057 100644 --- a/perception_eval/test/perception_lsim.py +++ b/perception_eval/test/perception_lsim.py @@ -67,7 +67,7 @@ def __init__( # evaluation_task指定 + 今後各taskで異なるパラメータが入るかも evaluation_config_dict.update({"evaluation_task": evaluation_task}) evaluation_config_dict.update({"min_point_numbers": [0, 0, 0, 0]}) - elif evaluation_task == "tracking": + elif evaluation_task in ("tracking", "prediction"): # tracking frame_id: str = "map" evaluation_config_dict.update({"evaluation_task": evaluation_task}) @@ -159,10 +159,6 @@ def visualize(self, frame_result: PerceptionFrameResult): f"{len(frame_result.pass_fail_result.fn_objects)} FN objects", ) - if frame_result.metrics_score.maps[0].map < 0.7: - logging.debug("mAP is low") - # logging.debug(f"frame result {format_class_for_log(frame_result.metrics_score)}") - # Visualize the latest frame result # self.evaluator.visualize_frame()