-
Notifications
You must be signed in to change notification settings - Fork 432
/
04-schedule.qmd
258 lines (253 loc) · 26 KB
/
04-schedule.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
---
title: "Schedule"
---
There are a lot of materials in Data Science Course in a Box, which allows instructors to pick and choose what they want depending on the length of the course they're teaching, their audience, and the curriculum within which the course is placed.
The following are two options for course schedules, one for a 11-week course and the other for a 15-week course.
## 11-week schedule
+-------+--------+---------------------------------------------------------------+--------------------------+
| Unit | Week | Title | Type |
+=======+========+===============================================================+==========================+
| 1 | 1 | Welcome to data science! | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 1 | 1 | Meet the toolkit: Programming | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 1 | 1 | Meet the toolkit: Version control & collaboration | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 1 | 1 | Hello R | Lab |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 1 | 1 | Pet names | Homework |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **2** | **Data and visualisation** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **2** | **Visualising data with ggplot2** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **2** | **Visualising numerical data** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **2** | **Visualising categorical data** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **2** | **StarWars + Dataviz** | **Application exercise** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **2** | **Plastic waste** | **Lab** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **2** | **Airbnb listings in Edinburgh** | **Homework** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 2 | 3 | Tidy data | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 2 | 3 | Grammar of data wrangling | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 2 | 3 | Working with a single data frame | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 2 | 3 | Working with multiple data frames | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 2 | 3 | Tidying data | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 2 | 3 | Hotels + Data wrangling | Application exercise |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 2 | 3 | Nobel laureates | Lab |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 2 | 3 | Road traffic accidents | Homework |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **4** | **Data types** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **4** | **Data classes** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **4** | **Importing data** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **4** | **Recoding data** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **4** | **Hotels + Data types** | **Application exercise** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **4** | **Nobels + Sales + Data import** | **Application exercise** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **4** | **Option 1: La Quinta is Spanish for next to Denny's, Pt. 1** | **Lab** |
| | | | |
| | | **Option 2: La Quinta is Spanish for next to Denny's, Pt. 2** | |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **4** | **College majors** | **Homework** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 2 | 5 | Tips for effective data visualization | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 2 | 5 | Brexit + Telling stories with dataviz | Application exercise |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 2 | 5 | Scientific studies and confounding | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 2 | 5 | Simpson's paradox | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 2 | 5 | Doing data science | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 2 | 5 | Option 1: Take a sad plot and make it better | Lab |
| | | | |
| | | Option 2: Simpson's paradox | |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 2 | 5 | Legos | Homework |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **6** | **Web scraping** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **6** | **Scraping top 250 movies on IMDB** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **6** | **Web scraping considerations** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **6** | **IMDB + Web scraping** | **Application exercise** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **6** | **Functions** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **6** | **Iteration** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **6** | **University of Edinburgh Art Collection** | **Lab** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **2** | **6** | **Money in politics** | **Homework** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 3 | 7 | Misrepresentation | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 3 | 7 | Data privacy | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 3 | 7 | Algorithmic bias | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 3 | 7 | Conveying the right message through visualisation | Lab |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 3 | 7 | Project proposals | Project |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **4** | **8** | **Fitting and interpreting models** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **4** | **8** | **Modelling nonlinear relationships** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **4** | **8** | **Models with multiple predictors** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **4** | **8** | **More models with multiple predictors** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **4** | **8** | **Grading the professor, Pt 1** | **Lab** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **4** | **8** | **Option 1: Bike rentals in DC** | **Homework** |
| | | | |
| | | **Option 2: Peer review of project proposals** | |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 4 | 9 | Logistic regression | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 4 | 9 | Prediction and overfitting | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 4 | 9 | Feature engineering | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 4 | 9 | Grading the professor, Pt 1 | Lab |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 4 | 9 | Exploring the GSS | Homework |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **4** | **10** | **Cross validation** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **4** | **10** | **The Office, Part 1** | **Application exercise** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **4** | **10** | **The Office, Part 2** | **Application exercise** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **4** | **10** | **Quantifying uncertainty** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **4** | **10** | **Bootstrapping** | **Lecture** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **4** | **10** | **Option 1: Smoking during pregnancy** | **Lab** |
| | | | |
| | | **Option 2: Work on projects** | |
| | | | |
| | | **Option 3: Collaboration on GitHub** | |
+-------+--------+---------------------------------------------------------------+--------------------------+
| **4** | **10** | **Modelling the GSS** | **Homework** |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 5 | 11 | Text analysis | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 5 | 11 | Comparing texts | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 5 | 11 | Interactive web apps | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 5 | 11 | Machine learning | Lecture |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 5 | 11 | Project presentations | Lab |
+-------+--------+---------------------------------------------------------------+--------------------------+
| 5 | 11 | Wrap up | Homework |
+-------+--------+---------------------------------------------------------------+--------------------------+
## 15-week schedule
| Unit | Week | Title | Type |
|-------|--------|-----------------------------------------------------|--------------------------|
| 1 | 1 | Welcome to data science! | Lecture |
| 1 | 1 | Meet the toolkit: Programming | Lecture |
| 1 | 1 | Meet the toolkit: Version control & collaboration | Lecture |
| 1 | 1 | Hello R | Lab |
| 1 | 1 | Pet names | Homework |
| **2** | **2** | **Data and visualisation** | **Lecture** |
| **2** | **2** | **Visualising data with ggplot2** | **Lecture** |
| **2** | **2** | **Visualising numerical data** | **Lecture** |
| **2** | **2** | **Visualising categorical data** | **Lecture** |
| **2** | **2** | **StarWars + Dataviz** | **Application exercise** |
| **2** | **2** | **Plastic waste** | **Lab** |
| **2** | **2** | **Airbnb listings in Edinburgh** | **Homework** |
| 2 | 3 | Tidy data | Lecture |
| 2 | 3 | Grammar of data wrangling | Lecture |
| 2 | 3 | Working with a single data frame | Lecture |
| 2 | 3 | Working with multiple data frames | Lecture |
| 2 | 3 | Tidying data | Lecture |
| 2 | 3 | Hotels + Data wrangling | Application exercise |
| 2 | 3 | Nobel laureates | Lab |
| 2 | 3 | Road traffic accidents | Homework |
| **2** | **4** | **Data types** | **Lecture** |
| **2** | **4** | **Data classes** | **Lecture** |
| **2** | **4** | **Recoding data** | **Lecture** |
| **2** | **4** | **Hotels + Data types** | **Application exercise** |
| **2** | **4** | **La Quinta is Spanish for next to Denny's, Pt. 1** | **Lab** |
| **2** | **4** | **College majors** | **Homework** |
| 2 | 5 | Importing data | Lecture |
| 2 | 5 | Nobels + Sales + Data import | Application exercise |
| 2 | 5 | Tips for effective data visualization | Lecture |
| 2 | 5 | Brexit + Telling stories with dataviz | Application exercise |
| 2 | 5 | Take a sad plot and make it better | Lab |
| 2 | 5 | La Quinta is Spanish for next to Denny's, Pt. 2 | Homework |
| **2** | **6** | **Scientific studies and confounding** | **Lecture** |
| **2** | **6** | **Simpson's paradox** | **Lecture** |
| **2** | **6** | **Doing data science** | **Lecture** |
| **2** | **6** | **Simpson's paradox** | **Lab** |
| **2** | **6** | **Legos** | **Homework** |
| 2 | 7 | Web scraping | Lecture |
| 2 | 7 | Scraping top 250 movies on IMDB | Lecture |
| 2 | 7 | Web scraping considerations | Lecture |
| 2 | 7 | IMDB + Web scraping | Application exercise |
| 2 | 7 | Work on projects | Lab |
| 2 | 7 | Work on projects | Homework |
| **2** | **8** | **Functions** | **Lecture** |
| **2** | **8** | **Iteration** | **Lecture** |
| **2** | **8** | **University of Edinburgh Art Collection** | **Lab** |
| **2** | **8** | **Money in politics** | **Homework** |
| 3 | 9 | Misrepresentation | Lecture |
| 3 | 9 | Data privacy | Lecture |
| 3 | 9 | Algorithmic bias | Lecture |
| 3 | 9 | Conveying the right message through visualisation | Lab |
| 3 | 9 | Project proposals | Project |
| 3 | 9 | Peer review of project proposals | Homework |
| **4** | **10** | **Fitting and interpreting models** | **Lecture** |
| **4** | **10** | **Modelling nonlinear relationships** | **Lecture** |
| **4** | **10** | **Models with multiple predictors** | **Lecture** |
| **4** | **10** | **More models with multiple predictors** | **Lecture** |
| **4** | **10** | **Grading the professor, Pt 1** | **Lab** |
| **4** | **10** | **Bike rentals in DC** | **Homework** |
| 4 | 11 | Logistic regression | Lecture |
| 4 | 11 | Prediction and overfitting | Lecture |
| 4 | 11 | Feature engineering | Lecture |
| 4 | 11 | Grading the professor, Pt. 1 | Lab |
| 4 | 11 | Exploring the GSS | Homework |
| **4** | **12** | **Cross validation** | **Lecture** |
| **4** | **12** | **The Office, Part 1** | **Application exercise** |
| **4** | **12** | **The Office, Part 2** | **Application exercise** |
| **4** | **12** | **Bootstrapping** | **Lecture** |
| **4** | **12** | **Work on projects** | **Lab** |
| **4** | **12** | **Grading the professor, Pt. 2** | **Homework** |
| 4 | 13 | Quantifying uncertainty | Lecture |
| 4 | 13 | Bootstrapping | Lecture |
| 4 | 13 | Hypothesis testing | Lecture |
| 4 | 13 | Inference overview | Lecture |
| 4 | 13 | Smoking during pregnancy | Lab |
| 4 | 13 | Modelling the GSS | Homework |
| **5** | **14** | **Text analysis** | **Lecture** |
| **5** | **14** | **Comparing texts** | **Lecture** |
| **5** | **14** | **Interactive web apps** | **Lecture** |
| **5** | **14** | **Machine learning** | **Lecture** |
| **5** | **14** | **Collaborating on GitHub** | **Lab** |
| **5** | **14** | **Wrap up** | **Homework** |
| 5 | 15 | Bayesian inference | Lecture |
| 5 | 15 | Building interactive web apps, Pt. 1 | Lecture |
| 5 | 15 | Building interactive web apps, Pt. 1 | Lecture |
| 5 | 15 | Project presentations | Lab |
| 5 | 15 | N/A | Homework |