Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

use my dataset to train FCOS net,why the loss is nan? #381

Open
funny000 opened this issue Jun 17, 2022 · 2 comments
Open

use my dataset to train FCOS net,why the loss is nan? #381

funny000 opened this issue Jun 17, 2022 · 2 comments

Comments

@funny000
Copy link

my dataset is remote dataset DIOR that come from Northwestern Polytechnical University, so when i use the dataset to train FCOS net, the loss is nan,

who can ask the reason?

the follow is error informatoin:

2022-06-17 07:54:53.057 | INFO | main🚋229 - cls loss : 5515.9775390625, reg loss : 7.476679801940918, ness loss : 0.7106261253356934, sum loss : 279.5187072753906
2022-06-17 07:54:54.175 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan
2022-06-17 07:54:55.242 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan
2022-06-17 07:54:56.419 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan
2022-06-17 07:54:57.572 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan
2022-06-17 07:54:58.608 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan
2022-06-17 07:54:59.634 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan
2022-06-17 07:55:00.939 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan
2022-06-17 07:55:02.146 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan
2022-06-17 07:55:03.483 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan
2022-06-17 07:55:04.700 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan
2022-06-17 07:55:05.925 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan
2022-06-17 07:55:06.957 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan
2022-06-17 07:55:08.256 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan
2022-06-17 07:55:09.364 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan
2022-06-17 07:55:10.461 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan
2022-06-17 07:55:11.527 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan
2022-06-17 07:55:12.584 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan
2022-06-17 07:55:13.665 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan
2022-06-17 07:55:14.936 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan
2022-06-17 07:55:16.000 | INFO | main🚋229 - cls loss : nan, reg loss : nan, ness loss : nan, sum loss : nan

@funny000
Copy link
Author

i see #322 and try do the solution in my work.

@funny000
Copy link
Author

funny000 commented Jun 17, 2022

use torch.nn.utils.clip_grad_norm_ function can solve the problem and add the a small learning rate

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant