-
Notifications
You must be signed in to change notification settings - Fork 0
/
euler_038.py
56 lines (42 loc) · 1.59 KB
/
euler_038.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
"""
Take the number 192 and multiply it by each of 1, 2, and 3:
192 x 1 = 192 192 x 2 = 384 192 x 3 = 576 By concatenating each
product we get the 1 to 9 pandigital, 192384576. We will call
192384576 the concatenated product of 192 and (1,2,3)
The same can be achieved by starting with 9 and multiplying by 1, 2,
3, 4, and 5, giving the pandigital, 918273645, which is the
concatenated product of 9 and (1,2,3,4,5).
What is the largest 1 to 9 pandigital 9-digit number that can be
formed as the concatenated product of an integer with (1,2, ... , n)
where n > 1?
"""
from utils import sorted_perms
def sorted_pandigitals():
for perm in sorted_perms(range(1,10), reverse=True):
yield int(''.join(map(str, perm)))
def concatenatable(trial, num, step):
"""returns true if pandigital number satisfies criteria for this
problem
"""
if step*trial > num:
return False
if step*trial == num and step > 1:
return True
snum = str(num)
numlen = len(snum)
triallen = len(str(step*trial))
divideby = step*trial * 10**(numlen - triallen)
(prin, rem) = divmod(num, divideby)
if prin == 1 and snum[triallen:] == str(rem):
return concatenatable(trial, rem, step+1)
else:
trial = int(str(trial)+snum[0])
num = int(str(trial)+snum[1:])
return concatenatable(trial, num, 1)
def concatenatable_wrapper(num):
snum = str(num)
trial = int(snum[0])
return concatenatable(trial, num, 1)
def p39():
from itertools import islice, ifilter
return islice(ifilter(concatenatable_wrapper, sorted_pandigitals()), 1).next()