forked from akbloodadarsh/Twitter-Sentimental-Analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LinearClassifier.py
21 lines (19 loc) · 896 Bytes
/
LinearClassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.metrics import average_precision_score
from sklearn.metrics import roc_auc_score
from sklearn.svm import SVC
def LinearClassifierAlgo(x_train_vft, y_train, x_test_vft, y_test, vec):
print("Linear Classifier")
lc = SVC(kernel='linear')
lc.fit(x_train_vft, y_train)
y_predict_class = lc.predict(x_test_vft)
print("Confusion Matrix")
print(confusion_matrix(y_test, y_predict_class))
print('Accuracy Score :', accuracy_score(y_test, y_predict_class))
print('ROC(Receiver Operating Characteristic) and AUC(Area Under Curve)', roc_auc_score(y_test, y_predict_class))
print('Average Precision Score:', average_precision_score(y_test, y_predict_class))
if lc.predict(vec) == [1]:
return "Positive"
else:
return "Negative"