We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Layer.call
Hello, thank you for sharing this.
I am getting this error when am trying to run this in Colab "ValueError: The first argument to Layer.call must always be passed."
This is my model code: from attention import AttentionLayer
from keras import backend as K K.clear_session() latent_dim = 100 embedding_dim=100
encoder_inputs = Input(shape=(max_len_text,)) enc_emb = Embedding(x_voc_size, latent_dim,trainable=True)(encoder_inputs)
#LSTM 1 encoder_lstm1 = LSTM(latent_dim,return_sequences=True,return_state=True) encoder_output1, state_h1, state_c1 = encoder_lstm1(enc_emb)
#LSTM 2 encoder_lstm2 = LSTM(latent_dim,return_sequences=True,return_state=True) encoder_output2, state_h2, state_c2 = encoder_lstm2(encoder_output1)
#LSTM 3 encoder_lstm3=LSTM(latent_dim, return_state=True, return_sequences=True) encoder_outputs, state_h, state_c= encoder_lstm3(encoder_output2)
decoder_inputs = Input(shape=(None,)) dec_emb_layer = Embedding(y_voc_size, latent_dim,trainable=True) dec_emb = dec_emb_layer(decoder_inputs)
#LSTM using encoder_states as initial state decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True) decoder_outputs,decoder_fwd_state, decoder_back_state = decoder_lstm(dec_emb,initial_state=[state_h, state_c])
#Attention Layer attn_layer = AttentionLayer(name='attention_layer') attn_out, attn_states = attn_layer()([encoder_outputs, decoder_outputs])
decoder_concat_input = Concatenate(axis=-1, name='concat_layer')([decoder_outputs, attn_out])
#Dense layer decoder_dense = TimeDistributed(Dense(y_voc_size, activation='softmax')) decoder_outputs = decoder_dense(decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs) model.summary()
Please advice if I am missing something, thank you
The text was updated successfully, but these errors were encountered:
attn_layer() - Should you have () here?
Sorry, something went wrong.
No branches or pull requests
Hello, thank you for sharing this.
I am getting this error when am trying to run this in Colab
"ValueError: The first argument to
Layer.call
must always be passed."This is my model code:
from attention import AttentionLayer
from keras import backend as K
K.clear_session()
latent_dim = 100
embedding_dim=100
Encoder
encoder_inputs = Input(shape=(max_len_text,))
enc_emb = Embedding(x_voc_size, latent_dim,trainable=True)(encoder_inputs)
#LSTM 1
encoder_lstm1 = LSTM(latent_dim,return_sequences=True,return_state=True)
encoder_output1, state_h1, state_c1 = encoder_lstm1(enc_emb)
#LSTM 2
encoder_lstm2 = LSTM(latent_dim,return_sequences=True,return_state=True)
encoder_output2, state_h2, state_c2 = encoder_lstm2(encoder_output1)
#LSTM 3
encoder_lstm3=LSTM(latent_dim, return_state=True, return_sequences=True)
encoder_outputs, state_h, state_c= encoder_lstm3(encoder_output2)
Set up the decoder.
decoder_inputs = Input(shape=(None,))
dec_emb_layer = Embedding(y_voc_size, latent_dim,trainable=True)
dec_emb = dec_emb_layer(decoder_inputs)
#LSTM using encoder_states as initial state
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs,decoder_fwd_state, decoder_back_state = decoder_lstm(dec_emb,initial_state=[state_h, state_c])
#Attention Layer
attn_layer = AttentionLayer(name='attention_layer')
attn_out, attn_states = attn_layer()([encoder_outputs, decoder_outputs])
Concat attention output and decoder LSTM output
decoder_concat_input = Concatenate(axis=-1, name='concat_layer')([decoder_outputs, attn_out])
#Dense layer
decoder_dense = TimeDistributed(Dense(y_voc_size, activation='softmax'))
decoder_outputs = decoder_dense(decoder_outputs)
Define the model
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
model.summary()
Please advice if I am missing something, thank you
The text was updated successfully, but these errors were encountered: