-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathssd.cpp
225 lines (176 loc) · 9.43 KB
/
ssd.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#include "ssd.hpp"
SSDetection::SSDetection(const std::string &weight, torch::Device *device) {
SetFixedParams();
device_ = device;
LoadTracedModule(weight, device_);
}
void SSDetection::SetFixedParams() {
net_size_ = 300;
feature_maps_ = {38, 19, 10, 5, 3, 1};
steps_ = {8, 16, 32, 64, 100, 300};
min_size_ = {30, 60, 111, 162, 213, 264};
max_size_ = {60, 111, 162, 213, 264, 315};
aspect_ratios_ = {{2}, {2, 3}, {2, 3}, {2, 3}, {2}, {2}};
nms_thresh_ = 0.45;
}
void SSDetection::LoadTracedModule(const std::string &weight, torch::Device *device) {
module_ = std::make_shared<torch::jit::script::Module>(torch::jit::load(weight));
//模型转到GPU中去
module_->to(*device_);
}
torch::Tensor SSDetection::PriorBox (torch::Device device){
int num_prior_box = 0;
for(size_t i = 0; i < feature_maps_.size(); i++) {
num_prior_box += feature_maps_[i] * feature_maps_[i] * (aspect_ratios_[i].size() * 2 + 2);
}
torch::Tensor prior_boxes = torch::empty({num_prior_box,4}).to(device);
int64_t start = 0;
int64_t end = 0;
for(size_t i = 0; i < feature_maps_.size(); i++) {
int num_anchor_layer = feature_maps_[i] * feature_maps_[i];
int num_prior_boxes_layer = feature_maps_[i] * feature_maps_[i] * (aspect_ratios_[i].size() * 2 + 2);
auto feature_len = torch::arange(feature_maps_[i]).to(device);
// meshgrid(x, y)
std::vector<torch::Tensor> args = torch::meshgrid({feature_len, feature_len});
// args[0]中的每一行都是x里面的一个元素 args[1]中的每一列都是y中的一个元素
torch::Tensor cy = args[0].contiguous().view({-1, 1});
//pytorch 中是反着来的
torch::Tensor cx = args[1].contiguous().view({-1, 1});
//这里必须要转换乘float,不转换是long
cx = cx.toType(torch::kFloat);
cy = cy.toType(torch::kFloat);
float f_k = float(net_size_) / steps_[i];
// unit center x,y
//cx = (j + 0.5) / f_k cy = (i + 0.5) / f_k
//cx = cx.sub_(0.5).div_(torch::ones(cx.sizes()).to(device).mul_(f_k));
cx.add_(0.5).div_(torch::ones({num_anchor_layer,1}).fill_(f_k).to(device));
cy.add_(0.5).div_(torch::ones({num_anchor_layer,1}).fill_(f_k).to(device));
float min_k = min_size_[i] / float(net_size_);
float max_k = max_size_[i] / float(net_size_);
float s_k_min = min_k;
torch::Tensor s_k_min_tensor = torch::ones({num_anchor_layer,1}).fill_(s_k_min).to(device);
torch::Tensor prior_boxes_1 = torch::cat({cx, cy, s_k_min_tensor, s_k_min_tensor}, 1);
float s_k_max = sqrt(min_k * max_k);
torch::Tensor s_k_max_tensor = torch::ones({num_anchor_layer,1}).fill_(s_k_max).to(device);
torch::Tensor prior_boxes_2 = torch::cat({cx, cy, s_k_max_tensor, s_k_max_tensor}, 1);
torch::Tensor prior_boxes_layer = torch::cat({prior_boxes_1, prior_boxes_2}, 1);
for (size_t j = 0; j < aspect_ratios_[i].size(); j++) {
float aspect_ratio = aspect_ratios_[i][j];
float s_k_short = s_k_min * sqrt(aspect_ratio);
float s_k_long = s_k_min / sqrt(aspect_ratio);
torch::Tensor s_k_short_tensor = torch::ones({num_anchor_layer , 1}).fill_(s_k_short).to(device);
torch::Tensor s_k_long_tensor = torch::ones({num_anchor_layer , 1}).fill_(s_k_long).to(device);
torch::Tensor prior_boxes_3 = torch::cat({cx, cy, s_k_short_tensor, s_k_long_tensor}, 1);
torch::Tensor prior_boxes_4 = torch::cat({cx, cy, s_k_long_tensor, s_k_short_tensor}, 1);
prior_boxes_layer = torch::cat({prior_boxes_layer, prior_boxes_3, prior_boxes_4}, 1);
}
//在pytorch中prior是先存放坐标(x,y)的左右的anchor_box,再存放下个坐标的
prior_boxes_layer = prior_boxes_layer.contiguous().view({-1, 4});
end = start + num_prior_boxes_layer;
prior_boxes.slice(0, start, end) = prior_boxes_layer;
start = end;
}
return prior_boxes;
}
torch::Tensor SSDetection::Decoder(torch::Tensor loc, const torch::Tensor& priors) {
// variance 0.1 0.2
torch::Tensor box = torch::cat(
{priors.slice(1,0,2) + loc.slice(1,0,2).mul(0.1) * priors.slice(1, 2,4),
priors.slice(1,2,4) * torch::exp(loc.slice(1,2,4).mul(0.2))} ,
1);
box.slice(1, 0, 2) -= box.slice(1, 2, 4).div(2);
box.slice(1, 2, 4) += box.slice(1, 0, 2);
return box.to(torch::kFloat32);
}
torch::Tensor SSDetection::nms(const torch::Tensor& decode_loc, const torch::Tensor& conf) {
torch::Tensor keep = torch::zeros({conf.size(0)}).to(torch::kLong).to(conf.device());
torch :: Tensor x1, y1, x2, y2;
x1 = decode_loc.select(1, 0);
y1 = decode_loc.select(1, 1);
x2 = decode_loc.select(1, 2);
y2 = decode_loc.select(1, 3);
torch::Tensor area = torch::mul(x2- x1, y2 - y1);
//按照分数从大到小排序
std::tuple<torch::Tensor,torch::Tensor> sort_ret = torch::sort(conf, 0, 1);
torch::Tensor idx_set = std::get<1>(sort_ret).squeeze(1);
int count = 0;
while (idx_set.numel() > 0) {
auto i = idx_set[0];
keep[count] = i;
count++;
if (idx_set.size(0) == 1) {
break;
}
idx_set = torch::slice(idx_set, 0, 1, idx_set.size(0));
torch::Tensor xx1 = torch::index_select(x1, 0, idx_set);
torch::Tensor yy1 = torch::index_select(y1, 0, idx_set);
torch::Tensor xx2 = torch::index_select(x2, 0, idx_set);
torch::Tensor yy2 = torch::index_select(y2, 0, idx_set);
torch::Tensor inter_rect_x1 = torch::max(xx1, x1[i]);
torch::Tensor inter_rect_y1 = torch::max(yy1, y1[i]);
torch::Tensor inter_rect_x2 = torch::min(xx2, x2[i]);
torch::Tensor inter_rect_y2 = torch::min(yy2, y2[i]);
// Intersection area
torch::Tensor inter_area = torch::max(inter_rect_x2 - inter_rect_x1, torch::zeros(inter_rect_x2.sizes()).to(inter_rect_x2.device())) *
torch::max(inter_rect_y2 - inter_rect_y1, torch::zeros(inter_rect_x2.sizes()).to(inter_rect_x2.device()));
torch::Tensor union_area = torch::index_select(area, 0, idx_set) - inter_area + area[i];
inter_area.div_(union_area);
auto mask_idx = torch::nonzero(inter_area.mul_(inter_area < nms_thresh_)).squeeze(1);
idx_set = torch::index_select(idx_set, 0, mask_idx);
}
return keep.slice(0, 0, count);
}
torch::Tensor SSDetection::DetectionLayer(const torch::Tensor& output, const torch::Tensor& prior_boxes, float nms_thresh) {
nms_thresh_ = nms_thresh;
// priors个数
int num_priors = output.size(0);
// 4个box + 1个背景 + num_classes个数
int num_digit = output.size(1);
torch::Tensor conf = output.slice(1, 4, num_digit);
torch::Tensor decode_loc = Decoder(output.slice(1, 0, 4), prior_boxes);
//每个框,对应num_classes + 1中分数最大的,返回分数最大值和对应的下标idx
std::tuple<torch::Tensor, torch::Tensor> max_classes = torch::max(output.slice(1, 4, num_digit), 1);
// shape: num_priors
auto max_conf = std::get<0>(max_classes).to(torch::kFloat32);
// shape: num_priors
auto max_conf_idx = std::get<1>(max_classes).to(torch::kFloat32);
auto mask_conf_idx = torch::nonzero(max_conf_idx).squeeze();
auto max_conf_t = max_conf.index_select(0,mask_conf_idx).unsqueeze(1);
auto max_conf_idx_t = max_conf_idx.index_select(0, mask_conf_idx).unsqueeze(1);
auto decode_loc_t = decode_loc.index_select(0, mask_conf_idx);
torch::Tensor keep = nms(decode_loc_t, max_conf_t);
decode_loc_t = torch::index_select(decode_loc_t, 0, keep);
max_conf_t = torch::index_select(max_conf_t, 0, keep);
max_conf_idx_t = torch::index_select(max_conf_idx_t, 0, keep);
decode_loc_t = torch::cat({decode_loc_t, max_conf_t, max_conf_idx_t}, 1);
return decode_loc_t;
}
torch::Tensor SSDetection::Forward(const cv::Mat& image) {
cv::Mat input;
cv::resize(image, input, cv::Size(net_size_, net_size_));
cv::cvtColor(input, input, cv::COLOR_BGR2RGB);
// 下方的代码即将图像转化为Tensor,随后导入模型进行预测
torch::Tensor tensor_image = torch::from_blob(input.data, {1,input.rows, input.cols,3}, torch::kByte);
tensor_image = tensor_image.to(*device_);
tensor_image = tensor_image.permute({0,3,1,2});
tensor_image = tensor_image.toType(torch::kFloat);
tensor_image[0][0].sub_(104);
tensor_image[0][1].sub_(117);
tensor_image[0][2].sub_(123);
auto start = std::chrono::high_resolution_clock::now();
torch::Tensor output = module_->forward({tensor_image}).toTensor().squeeze(0);
auto end = std::chrono::high_resolution_clock::now();
auto duration = duration_cast<milliseconds>(end - start);
std::cout << "forward taken : " << duration.count() << " ms" << endl;
start = std::chrono::high_resolution_clock::now();
torch::Tensor prior_boxes = PriorBox(*device_);
end = std::chrono::high_resolution_clock::now();
duration = duration_cast<milliseconds>(end - start);
std::cout << "PriorBox taken : " << duration.count() << " ms" << endl;
start = std::chrono::high_resolution_clock::now();
torch::Tensor result = DetectionLayer(output, prior_boxes, nms_thresh_);
end = std::chrono::high_resolution_clock::now();
duration = duration_cast<milliseconds>(end - start);
std::cout << "DetectionLayer taken : " << duration.count() << " ms" << endl;
return result;
}