-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinfer_LD.py
120 lines (103 loc) · 5.5 KB
/
infer_LD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import torch
from torch import nn
import numpy as np
import shutil
import argparse
import os
import random
import torchvision
from tqdm import tqdm
from copy import deepcopy
import json
from torch_utils import misc
import dnnlib
import legacy
from training.triplane import TriPlaneGenerator
from camera_utils import FOV_to_intrinsics, LookAtPoseSampler
def fix_seeds(seed, device):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
g = torch.Generator(device=device)
g.manual_seed(seed)
class Inference():
def __init__(self, save_path, G_ckpt_path, stylized_G_ckpt_path, seed=0, device='cuda', **kwargs):
os.makedirs(save_path, exist_ok=True)
self.save_path = save_path
self.device = device
fix_seeds(seed, device)
self.G = self.set_generator(G_ckpt_path, device).requires_grad_(False).eval()
self.G_frozen = deepcopy(self.G)
self.G.load_state_dict(torch.load(stylized_G_ckpt_path), strict=True)
self.cam_pivot = torch.tensor([0, 0, 0], device=device)
self.cam_radius = self.G_frozen.rendering_kwargs.get("avg_camera_radius", 2.7)
self.intrinsics = FOV_to_intrinsics(18.837, device=device)
visualize_yaw_pitch_list = [(-180 + 30*i, 10) for i in range(13)]
visualize_yaw_pitch_list_front = [visualize_yaw_pitch_list[i] for i in [3,5,6,7,9]]
self.front_pose_list_visualize = [self.get_pose(intrinsics=self.intrinsics, cam_pivot=self.cam_pivot, yaw=y*np.pi/180, pitch=p*np.pi/180) for y,p in visualize_yaw_pitch_list_front]
self.conditioning_camera_params = self.get_pose(self.cam_pivot, self.intrinsics, yaw=0, pitch=0.2, cam_radius=self.cam_radius, device=device)
@staticmethod
def set_generator(ckpt_path, device):
with dnnlib.util.open_url(ckpt_path) as f:
G = legacy.load_network_pkl(f)["G_ema"].to(device)
G_new = TriPlaneGenerator(*G.init_args, **G.init_kwargs).eval().requires_grad_(False).to(device)
misc.copy_params_and_buffers(G, G_new, require_all=True)
G_new.neural_rendering_resolution = G.neural_rendering_resolution
G_new.rendering_kwargs = G.rendering_kwargs
del G
return G_new
@staticmethod
def get_pose(cam_pivot, intrinsics, yaw=None, pitch=None, yaw_range=[-0.35,0.35], pitch_range=[-0.15,0.15], cam_radius=2.7, device='cuda'):
if yaw is None:
yaw = np.random.uniform(yaw_range[0], yaw_range[1])
if pitch is None:
pitch = np.random.uniform(pitch_range[0], pitch_range[1])
cam2world_pose = LookAtPoseSampler.sample(np.pi/2 + yaw, np.pi/2 + pitch, cam_pivot, radius=cam_radius, device=device)
c = torch.cat([cam2world_pose.reshape(-1, 16), intrinsics.reshape(-1, 9)], 1).reshape(1,-1)
return c
@torch.no_grad()
def infer(self, latent_list=[], synth_sample_num=10, bs=1):
ws_list = []
if latent_list == []:
for _ in range(synth_sample_num):
z = torch.from_numpy(np.random.randn(bs, self.G_frozen.z_dim)).to(self.device)
ws = self.G_frozen.backbone.mapping(z, self.conditioning_camera_params.repeat(bs,1), truncation_psi=0.75, truncation_cutoff=14)
ws_list.append(ws)
else:
ws_list = [torch.from_numpy(np.load(ws_np)['w']).to(self.device) for ws_np in latent_list]
for idx, ws in tqdm(enumerate(ws_list)):
p_list, p_list_frozen = [], []
for pose in self.front_pose_list_visualize:
img = self.G.synthesis(ws, pose, forward_full=True, generate_background=False, make_background_white=True)["image"]
img_frozen = self.G_frozen.synthesis(ws, pose, forward_full=True, generate_background=False, make_background_white=True)["image"]
p_list.append(img)
p_list_frozen.append(img_frozen)
p = torch.cat([torch.cat(p_list, dim=-1), torch.cat(p_list_frozen, dim=-1)], dim=-2)
torchvision.utils.save_image(p, os.path.join(self.save_path, f'eval_mv_{str(idx).zfill(4)}.jpg'), normalize=True, value_range=(-1, 1))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--save_path', type=str, default="work_dirs/demo")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument('--latent_list_path', type=str, default="example")
parser.add_argument('--synth_sample_num', type=int, default=10)
parser.add_argument('--G_ckpt_path', type=str, default="")
parser.add_argument('--stylized_G_ckpt_path', type=str, default="")
args = parser.parse_args()
print(json.dumps(vars(args), indent=4))
os.makedirs(args.save_path, exist_ok=True)
shutil.copyfile(__file__, os.path.join(args.save_path, os.path.basename(__file__)))
with open(os.path.join(args.save_path, "args_log_eval.txt"), "w") as file:
for arg in vars(args):
file.write(f"{arg}: {getattr(args, arg)}\n")
try:
latent_list = [os.path.join(args.latent_list_path,i) for i in os.listdir(args.latent_list_path) if i.endswith('npz')]
except:
latent_list = []
print(f'There is no available folder to fetch W+ latents. Generating {args.synth_sample_num} synth samples.')
inference = Inference(**vars(args))
inference.infer(latent_list=latent_list, synth_sample_num=args.synth_sample_num)