-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_face_detection.py
55 lines (44 loc) · 1.85 KB
/
test_face_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import cv2
import dlib
import gdown
import argparse
from pathlib import Path
def main(args):
# The dlib library provides two functions that can be used for face detection:
#
# 1. HOG + Linear SVM (fast and less accurate)
# 2. MMOD CNN face detector (slow and more accurate)
if args['detector'] == 'hog':
face_detector = dlib.get_frontal_face_detector()
else:
mmod_model = Path('mmod_human_face_detector.dat')
if not mmod_model.exists():
gdown.download(id='1oGNn74w9zU77uEVgzPrLxDG6X8aPzvba')
face_detector = dlib.cnn_face_detection_model_v1(str(mmod_model))
# predict face landmarks
landmarks_model = Path('shape_predictor_68_face_landmarks.dat')
if not landmarks_model.exists():
gdown.download(id='1HChdZjXEIqgqilqU2ar_mMOk-JflK5ah')
face_predictor = dlib.shape_predictor(str(landmarks_model))
cap = cv2.VideoCapture(0)
while True:
_, image = cap.read()
faces = face_detector(image, 1)
for i, face in enumerate(faces):
rect = face if args['detector'] == 'hog' else face.rect
cv2.rectangle(image, (rect.left(), rect.top()), (rect.right(), rect.bottom()), (0, 255, 0), 2)
print(f'face {i}: {rect}')
shape = face_predictor(image, rect)
for j in range(0, shape.num_parts):
(x, y) = (shape.part(j).x, shape.part(j).y)
cv2.circle(image, (x, y), 5, (0, 255, 0), -1)
cv2.imshow('Face Landmarks', image)
key = cv2.waitKey(1)
if key == 27:
break
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Face Landmarks Detection')
parser.add_argument('-d', '--detector', default='hog', choices=['hog', 'mmod'], help='detector type')
main(vars(parser.parse_args()))