-
Notifications
You must be signed in to change notification settings - Fork 0
/
default.yaml
260 lines (254 loc) · 7.92 KB
/
default.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# YAML default config file for multimodalecho project
# This file stores all default values
# and can be used as a template for new config files.
# extract_videos and extract_Mmode
# ================================================================= #
extract_videos:
# directory where Videos folder is stored
# default: /cluster/dataset/vogtlab/Projects/EchoNet/
data_dir: "/cluster/dataset/vogtlab/Projects/EchoNet/"
# directory where output should be stored
# default: None (is set in script depending on other params)
output: null
# split ("all", "TRAIN", "VAL", "TEST") to perform operations on
# default: all
split: all
# length which videos should be cut to (shorter videos are discarded)
# default: 112
length: 112
extract_Mmode:
# directory where Videos folder is stored
# default: /cluster/dataset/vogtlab/Projects/EchoNet/
data_dir: "/cluster/dataset/vogtlab/Projects/EchoNet/"
# directory where output should be stored
# default: None (is set in script depending on other params)
output: null
# split ("all", "TRAIN", "VAL", "TEST") to perform operations on
# default: all
split: all
# type of axes to extract ("default", "informed", "random")
# default: default
axis: default
# number of M-modes to extract
# default: 2
num_modes: 2
# width of resulting M-mode images
# default: 112
width: 112
# seed for random number generators
# default: 0
seed: 0
# run_model
# ================================================================= #
run_model:
# directory where Videos folder is stored
# default: /cluster/dataset/vogtlab/Projects/EchoNet/
data_dir: "/cluster/dataset/vogtlab/Projects/EchoNet/"
# directory where output should be stored
# default: None (is set in script depending on other params)
output: null
# specifies model type to run
# default: 2d_resnet34
model_type: "2d_resnet34"
# whether to use pretrained weights (available only for 2d models)
# default: False
pretrained: False
# whether to perform classification (as opposed to regression)
# default: False
classification: False
# datatype of input data (one of "tensors", "videos", "images")
# default: "videos"
datatype: "videos"
# threshold to use for classification
# default: 50
thresh: 50
# number of epochs
# default: 90
num_epochs: 90
# learning rate
# default: 1e-4
lr: 0.0001
# step size to use for lr scheduler
# default: 15
step_size: 15
# batch size to use during TRAIN and VAL
# default: 64
batch_size: 64
# whether to extract frames (as opposed to M-modes)
# default: False
frames: False
# axis to use for M-mode extraction
# "default" creates linearly spaced angles around the vertical axis
# "informed" creates linearly spaced angles around the axis through the left ventricle
# "random_start" creates linearly spaced angles around a random starting axis
# "random" leads to randomly selected angles
# default: "default"
axis: "default"
# number of modes (frames or M-modes) to extract
# default: 2
num_modes: 2
# width of M-mode images
# default 112 (resulting in square 112x112 inputs)
width: 112
# whether to perform feature selection (currently removes image with specified index)
# default: None
feature_selection: null
# which type of curriculum learning to perform (if any)
# default: None
curriculum: null
# number of warmup epochs for self-paced learning
# default: 5
spl_warmup: 5
# initial loss threshold for self-paced learning
# default: 100
spl_thresh: 100
# threshold growing factor for self-paced learning
# default: 1.3
spl_factor: 1.3
# quantile to be used for self-paced learning (alternative to the other three params)
# default: 0.75
spl_quantile: 0.75
# initial fraction of train size to use for training
# default: 0.2
init_fraction: 0.2
# fraction of total epochs after which the entire train set is used for training
# default: 0.8
epoch_fraction: 0.8
# device to run computations on
# default: None (runs on CUDA whenever available)
device: null
# global random seed for numpy and torch
# default: 0
seed: 0
# whether to record tensorboard data (TRAIN and VAL loss over epochs)
# default: False
tensorboard: False
# collect_results
# ================================================================= #
collect_results:
# directory where Videos folder is stored
# default: output
data_dir: "output"
# directory where output should be stored
# default: None (is set in script depending on other params)
output: null
# whether to produce plots
# default: True
plot: True
# whether to print table
# default: True
table: True
# if specified, only results from this model type are collected
# default: None (means all model types)
model_type: null
# if specified, only relevant results are collected
# default: None
pretrained: null
# if specified, only relevant results are collected
# default: None
classification: None
# threshold to use for classification
# default: 50
thresh: 50
# number of epochs
# default: 90
num_epochs: 90
# learning rate
# default: 1e-4
lr: 0.0001
# step size to use for lr scheduler
# default: 15
step_size: 15
# batch size to use during TRAIN and VAL
# default: 64
batch_size: 64
# if specified, only relevant results are collected
# default: None
axis: null
# if specified, only relevant results are collected
# default: None
feature_selection: null
# if specified, only relevant results are collected
# default: None
curriculum: null
# if specified, only relevant results are collected
# default: None
spl_warmup: null
# if specified, only relevant results are collected
# default: None
spl_thresh: null
# if specified, only relevant results are collected
# default: None
spl_factor: null
# quantile to be used for self-paced learning (alternative to the other three params)
# default: None
spl_quantile: null
# if specified, only relevant results are collected
# default: None
init_fraction: null
# if specified, only relevant results are collected
# default: None
epoch_fraction: null
# global random seed for numpy and torch
# default: 0
seed: 0
# epoch_plots
# ================================================================= #
epoch_plots:
# directory where Videos folder is stored
# default: output
data_dir: "output"
# directory where output should be stored
# default: None (is set in script depending on other params)
output: "plots"
# if specified, only results from this model type are collected
# default: None (means all model types)
model_type: null
# if specified, only relevant results are collected
# default: None
pretrained: null
# if specified, only relevant results are collected
# default: None
classification: None
# learning rate
# default: 1e-4
lr: 0.0001
# step size to use for lr scheduler
# default: 15
step_size: 15
# batch size to use during TRAIN and VAL
# default: 64
batch_size: 64
# if specified, only relevant results are collected
# default: None
axis: null
# if specified, only relevant results are collected
# default: None
num_modes: null
# if specified, only relevant results are collected
# default: None
feature_selection: null
# if specified, only relevant results are collected
# default: None
curriculum: null
# if specified, only relevant results are collected
# default: None
spl_warmup: null
# if specified, only relevant results are collected
# default: None
spl_thresh: null
# if specified, only relevant results are collected
# default: None
spl_factor: null
# quantile to be used for self-paced learning (alternative to the other three params)
# default: None
spl_quantile: null
# if specified, only relevant results are collected
# default: None
init_fraction: null
# if specified, only relevant results are collected
# default: None
epoch_fraction: null
# global random seed for numpy and torch
# default: 0
seed: 0