-
Notifications
You must be signed in to change notification settings - Fork 546
/
sunfish.py
executable file
·500 lines (434 loc) · 20.6 KB
/
sunfish.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
#!/usr/bin/env pypy3
from __future__ import print_function
import time, math
from itertools import count
from collections import namedtuple, defaultdict
# If we could rely on the env -S argument, we could just use "pypy3 -u"
# as the shebang to unbuffer stdout. But alas we have to do this instead:
#from functools import partial
#print = partial(print, flush=True)
version = "sunfish 2023"
###############################################################################
# Piece-Square tables. Tune these to change sunfish's behaviour
###############################################################################
# With xz compression this whole section takes 652 bytes.
# That's pretty good given we have 64*6 = 384 values.
# Though probably we could do better...
# For one thing, they could easily all fit into int8.
piece = {"P": 100, "N": 280, "B": 320, "R": 479, "Q": 929, "K": 60000}
pst = {
'P': ( 0, 0, 0, 0, 0, 0, 0, 0,
78, 83, 86, 73, 102, 82, 85, 90,
7, 29, 21, 44, 40, 31, 44, 7,
-17, 16, -2, 15, 14, 0, 15, -13,
-26, 3, 10, 9, 6, 1, 0, -23,
-22, 9, 5, -11, -10, -2, 3, -19,
-31, 8, -7, -37, -36, -14, 3, -31,
0, 0, 0, 0, 0, 0, 0, 0),
'N': ( -66, -53, -75, -75, -10, -55, -58, -70,
-3, -6, 100, -36, 4, 62, -4, -14,
10, 67, 1, 74, 73, 27, 62, -2,
24, 24, 45, 37, 33, 41, 25, 17,
-1, 5, 31, 21, 22, 35, 2, 0,
-18, 10, 13, 22, 18, 15, 11, -14,
-23, -15, 2, 0, 2, 0, -23, -20,
-74, -23, -26, -24, -19, -35, -22, -69),
'B': ( -59, -78, -82, -76, -23,-107, -37, -50,
-11, 20, 35, -42, -39, 31, 2, -22,
-9, 39, -32, 41, 52, -10, 28, -14,
25, 17, 20, 34, 26, 25, 15, 10,
13, 10, 17, 23, 17, 16, 0, 7,
14, 25, 24, 15, 8, 25, 20, 15,
19, 20, 11, 6, 7, 6, 20, 16,
-7, 2, -15, -12, -14, -15, -10, -10),
'R': ( 35, 29, 33, 4, 37, 33, 56, 50,
55, 29, 56, 67, 55, 62, 34, 60,
19, 35, 28, 33, 45, 27, 25, 15,
0, 5, 16, 13, 18, -4, -9, -6,
-28, -35, -16, -21, -13, -29, -46, -30,
-42, -28, -42, -25, -25, -35, -26, -46,
-53, -38, -31, -26, -29, -43, -44, -53,
-30, -24, -18, 5, -2, -18, -31, -32),
'Q': ( 6, 1, -8,-104, 69, 24, 88, 26,
14, 32, 60, -10, 20, 76, 57, 24,
-2, 43, 32, 60, 72, 63, 43, 2,
1, -16, 22, 17, 25, 20, -13, -6,
-14, -15, -2, -5, -1, -10, -20, -22,
-30, -6, -13, -11, -16, -11, -16, -27,
-36, -18, 0, -19, -15, -15, -21, -38,
-39, -30, -31, -13, -31, -36, -34, -42),
'K': ( 4, 54, 47, -99, -99, 60, 83, -62,
-32, 10, 55, 56, 56, 55, 10, 3,
-62, 12, -57, 44, -67, 28, 37, -31,
-55, 50, 11, -4, -19, 13, 0, -49,
-55, -43, -52, -28, -51, -47, -8, -50,
-47, -42, -43, -79, -64, -32, -29, -32,
-4, 3, -14, -50, -57, -18, 13, 4,
17, 30, -3, -14, 6, -1, 40, 18),
}
# Pad tables and join piece and pst dictionaries
for k, table in pst.items():
padrow = lambda row: (0,) + tuple(x + piece[k] for x in row) + (0,)
pst[k] = sum((padrow(table[i * 8 : i * 8 + 8]) for i in range(8)), ())
pst[k] = (0,) * 20 + pst[k] + (0,) * 20
###############################################################################
# Global constants
###############################################################################
# Our board is represented as a 120 character string. The padding allows for
# fast detection of moves that don't stay within the board.
A1, H1, A8, H8 = 91, 98, 21, 28
initial = (
" \n" # 0 - 9
" \n" # 10 - 19
" rnbqkbnr\n" # 20 - 29
" pppppppp\n" # 30 - 39
" ........\n" # 40 - 49
" ........\n" # 50 - 59
" ........\n" # 60 - 69
" ........\n" # 70 - 79
" PPPPPPPP\n" # 80 - 89
" RNBQKBNR\n" # 90 - 99
" \n" # 100 -109
" \n" # 110 -119
)
# Lists of possible moves for each piece type.
N, E, S, W = -10, 1, 10, -1
directions = {
"P": (N, N+N, N+W, N+E),
"N": (N+N+E, E+N+E, E+S+E, S+S+E, S+S+W, W+S+W, W+N+W, N+N+W),
"B": (N+E, S+E, S+W, N+W),
"R": (N, E, S, W),
"Q": (N, E, S, W, N+E, S+E, S+W, N+W),
"K": (N, E, S, W, N+E, S+E, S+W, N+W)
}
# Mate value must be greater than 8*queen + 2*(rook+knight+bishop)
# King value is set to twice this value such that if the opponent is
# 8 queens up, but we got the king, we still exceed MATE_VALUE.
# When a MATE is detected, we'll set the score to MATE_UPPER - plies to get there
# E.g. Mate in 3 will be MATE_UPPER - 6
MATE_LOWER = piece["K"] - 10 * piece["Q"]
MATE_UPPER = piece["K"] + 10 * piece["Q"]
# Constants for tuning search
QS = 40
QS_A = 140
EVAL_ROUGHNESS = 15
# minifier-hide start
opt_ranges = dict(
QS = (0, 300),
QS_A = (0, 300),
EVAL_ROUGHNESS = (0, 50),
)
# minifier-hide end
###############################################################################
# Chess logic
###############################################################################
Move = namedtuple("Move", "i j prom")
class Position(namedtuple("Position", "board score wc bc ep kp")):
"""A state of a chess game
board -- a 120 char representation of the board
score -- the board evaluation
wc -- the castling rights, [west/queen side, east/king side]
bc -- the opponent castling rights, [west/king side, east/queen side]
ep - the en passant square
kp - the king passant square
"""
def gen_moves(self):
# For each of our pieces, iterate through each possible 'ray' of moves,
# as defined in the 'directions' map. The rays are broken e.g. by
# captures or immediately in case of pieces such as knights.
for i, p in enumerate(self.board):
if not p.isupper():
continue
for d in directions[p]:
for j in count(i + d, d):
q = self.board[j]
# Stay inside the board, and off friendly pieces
if q.isspace() or q.isupper():
break
# Pawn move, double move and capture
if p == "P":
if d in (N, N + N) and q != ".": break
if d == N + N and (i < A1 + N or self.board[i + N] != "."): break
if (
d in (N + W, N + E)
and q == "."
and j not in (self.ep, self.kp, self.kp - 1, self.kp + 1)
#and j != self.ep and abs(j - self.kp) >= 2
):
break
# If we move to the last row, we can be anything
if A8 <= j <= H8:
for prom in "NBRQ":
yield Move(i, j, prom)
break
# Move it
yield Move(i, j, "")
# Stop crawlers from sliding, and sliding after captures
if p in "PNK" or q.islower():
break
# Castling, by sliding the rook next to the king
if i == A1 and self.board[j + E] == "K" and self.wc[0]:
yield Move(j + E, j + W, "")
if i == H1 and self.board[j + W] == "K" and self.wc[1]:
yield Move(j + W, j + E, "")
def rotate(self, nullmove=False):
"""Rotates the board, preserving enpassant, unless nullmove"""
return Position(
self.board[::-1].swapcase(), -self.score, self.bc, self.wc,
119 - self.ep if self.ep and not nullmove else 0,
119 - self.kp if self.kp and not nullmove else 0,
)
def move(self, move):
i, j, prom = move
p, q = self.board[i], self.board[j]
put = lambda board, i, p: board[:i] + p + board[i + 1 :]
# Copy variables and reset ep and kp
board = self.board
wc, bc, ep, kp = self.wc, self.bc, 0, 0
score = self.score + self.value(move)
# Actual move
board = put(board, j, board[i])
board = put(board, i, ".")
# Castling rights, we move the rook or capture the opponent's
if i == A1: wc = (False, wc[1])
if i == H1: wc = (wc[0], False)
if j == A8: bc = (bc[0], False)
if j == H8: bc = (False, bc[1])
# Castling
if p == "K":
wc = (False, False)
if abs(j - i) == 2:
kp = (i + j) // 2
board = put(board, A1 if j < i else H1, ".")
board = put(board, kp, "R")
# Pawn promotion, double move and en passant capture
if p == "P":
if A8 <= j <= H8:
board = put(board, j, prom)
if j - i == 2 * N:
ep = i + N
if j == self.ep:
board = put(board, j + S, ".")
# We rotate the returned position, so it's ready for the next player
return Position(board, score, wc, bc, ep, kp).rotate()
def value(self, move):
i, j, prom = move
p, q = self.board[i], self.board[j]
# Actual move
score = pst[p][j] - pst[p][i]
# Capture
if q.islower():
score += pst[q.upper()][119 - j]
# Castling check detection
if abs(j - self.kp) < 2:
score += pst["K"][119 - j]
# Castling
if p == "K" and abs(i - j) == 2:
score += pst["R"][(i + j) // 2]
score -= pst["R"][A1 if j < i else H1]
# Special pawn stuff
if p == "P":
if A8 <= j <= H8:
score += pst[prom][j] - pst["P"][j]
if j == self.ep:
score += pst["P"][119 - (j + S)]
return score
###############################################################################
# Search logic
###############################################################################
# lower <= s(pos) <= upper
Entry = namedtuple("Entry", "lower upper")
class Searcher:
def __init__(self):
self.tp_score = {}
self.tp_move = {}
self.history = set()
self.nodes = 0
def bound(self, pos, gamma, depth, can_null=True):
""" Let s* be the "true" score of the sub-tree we are searching.
The method returns r, where
if gamma > s* then s* <= r < gamma (A better upper bound)
if gamma <= s* then gamma <= r <= s* (A better lower bound) """
self.nodes += 1
# Depth <= 0 is QSearch. Here any position is searched as deeply as is needed for
# calmness, and from this point on there is no difference in behaviour depending on
# depth, so so there is no reason to keep different depths in the transposition table.
depth = max(depth, 0)
# Sunfish is a king-capture engine, so we should always check if we
# still have a king. Notice since this is the only termination check,
# the remaining code has to be comfortable with being mated, stalemated
# or able to capture the opponent king.
if pos.score <= -MATE_LOWER:
return -MATE_UPPER
# Look in the table if we have already searched this position before.
# We also need to be sure, that the stored search was over the same
# nodes as the current search.
entry = self.tp_score.get((pos, depth, can_null), Entry(-MATE_UPPER, MATE_UPPER))
if entry.lower >= gamma: return entry.lower
if entry.upper < gamma: return entry.upper
# Let's not repeat positions. We don't chat
# - at the root (can_null=False) since it is in history, but not a draw.
# - at depth=0, since it would be expensive and break "futulity pruning".
if can_null and depth > 0 and pos in self.history:
return 0
# Generator of moves to search in order.
# This allows us to define the moves, but only calculate them if needed.
def moves():
# First try not moving at all. We only do this if there is at least one major
# piece left on the board, since otherwise zugzwangs are too dangerous.
# FIXME: We also can't null move if we can capture the opponent king.
# Since if we do, we won't spot illegal moves that could lead to stalemate.
# For now we just solve this by not using null-move in very unbalanced positions.
# TODO: We could actually use null-move in QS as well. Not sure it would be very useful.
# But still.... We just have to move stand-pat to be before null-move.
#if depth > 2 and can_null and any(c in pos.board for c in "RBNQ"):
#if depth > 2 and can_null and any(c in pos.board for c in "RBNQ") and abs(pos.score) < 500:
if depth > 2 and can_null and abs(pos.score) < 500:
yield None, -self.bound(pos.rotate(nullmove=True), 1 - gamma, depth - 3)
# For QSearch we have a different kind of null-move, namely we can just stop
# and not capture anything else.
if depth == 0:
yield None, pos.score
# Look for the strongest ove from last time, the hash-move.
killer = self.tp_move.get(pos)
# If there isn't one, try to find one with a more shallow search.
# This is known as Internal Iterative Deepening (IID). We set
# can_null=True, since we want to make sure we actually find a move.
if not killer and depth > 2:
self.bound(pos, gamma, depth - 3, can_null=False)
killer = self.tp_move.get(pos)
# If depth == 0 we only try moves with high intrinsic score (captures and
# promotions). Otherwise we do all moves. This is called quiescent search.
val_lower = QS - depth * QS_A
# Only play the move if it would be included at the current val-limit,
# since otherwise we'd get search instability.
# We will search it again in the main loop below, but the tp will fix
# things for us.
if killer and pos.value(killer) >= val_lower:
yield killer, -self.bound(pos.move(killer), 1 - gamma, depth - 1)
# Then all the other moves
for val, move in sorted(((pos.value(m), m) for m in pos.gen_moves()), reverse=True):
# Quiescent search
if val < val_lower:
break
# If the new score is less than gamma, the opponent will for sure just
# stand pat, since ""pos.score + val < gamma === -(pos.score + val) >= 1-gamma""
# This is known as futility pruning.
if depth <= 1 and pos.score + val < gamma:
# Need special case for MATE, since it would normally be caught
# before standing pat.
yield move, pos.score + val if val < MATE_LOWER else MATE_UPPER
# We can also break, since we have ordered the moves by value,
# so it can't get any better than this.
break
yield move, -self.bound(pos.move(move), 1 - gamma, depth - 1)
# Run through the moves, shortcutting when possible
best = -MATE_UPPER
for move, score in moves():
best = max(best, score)
if best >= gamma:
# Save the move for pv construction and killer heuristic
if move is not None:
self.tp_move[pos] = move
break
# Stalemate checking is a bit tricky: Say we failed low, because
# we can't (legally) move and so the (real) score is -infty.
# At the next depth we are allowed to just return r, -infty <= r < gamma,
# which is normally fine.
# However, what if gamma = -10 and we don't have any legal moves?
# Then the score is actaully a draw and we should fail high!
# Thus, if best < gamma and best < 0 we need to double check what we are doing.
# We will fix this problem another way: We add the requirement to bound, that
# it always returns MATE_UPPER if the king is capturable. Even if another move
# was also sufficient to go above gamma. If we see this value we know we are either
# mate, or stalemate. It then suffices to check whether we're in check.
# Note that at low depths, this may not actually be true, since maybe we just pruned
# all the legal moves. So sunfish may report "mate", but then after more search
# realize it's not a mate after all. That's fair.
# This is too expensive to test at depth == 0
if depth > 2 and best == -MATE_UPPER:
flipped = pos.rotate(nullmove=True)
# Hopefully this is already in the TT because of null-move
in_check = self.bound(flipped, MATE_UPPER, 0) == MATE_UPPER
best = -MATE_LOWER if in_check else 0
# Table part 2
if best >= gamma:
self.tp_score[pos, depth, can_null] = Entry(best, entry.upper)
if best < gamma:
self.tp_score[pos, depth, can_null] = Entry(entry.lower, best)
return best
def search(self, history):
"""Iterative deepening MTD-bi search"""
self.nodes = 0
self.history = set(history)
self.tp_score.clear()
gamma = 0
# In finished games, we could potentially go far enough to cause a recursion
# limit exception. Hence we bound the ply. We also can't start at 0, since
# that's quiscent search, and we don't always play legal moves there.
for depth in range(1, 1000):
# The inner loop is a binary search on the score of the position.
# Inv: lower <= score <= upper
# 'while lower != upper' would work, but it's too much effort to spend
# on what's probably not going to change the move played.
lower, upper = -MATE_LOWER, MATE_LOWER
while lower < upper - EVAL_ROUGHNESS:
score = self.bound(history[-1], gamma, depth, can_null=False)
if score >= gamma:
lower = score
if score < gamma:
upper = score
yield depth, gamma, score, self.tp_move.get(history[-1])
gamma = (lower + upper + 1) // 2
###############################################################################
# UCI User interface
###############################################################################
def parse(c):
fil, rank = ord(c[0]) - ord("a"), int(c[1]) - 1
return A1 + fil - 10 * rank
def render(i):
rank, fil = divmod(i - A1, 10)
return chr(fil + ord("a")) + str(-rank + 1)
hist = [Position(initial, 0, (True, True), (True, True), 0, 0)]
#input = raw_input
# minifier-hide start
import sys, tools.uci
tools.uci.run(sys.modules[__name__], hist[-1])
sys.exit()
# minifier-hide end
searcher = Searcher()
while True:
args = input().split()
if args[0] == "uci":
print("id name", version)
print("uciok")
elif args[0] == "isready":
print("readyok")
elif args[0] == "quit":
break
elif args[:2] == ["position", "startpos"]:
del hist[1:]
for ply, move in enumerate(args[3:]):
i, j, prom = parse(move[:2]), parse(move[2:4]), move[4:].upper()
if ply % 2 == 1:
i, j = 119 - i, 119 - j
hist.append(hist[-1].move(Move(i, j, prom)))
elif args[0] == "go":
wtime, btime, winc, binc = [int(a) / 1000 for a in args[2::2]]
if len(hist) % 2 == 0:
wtime, winc = btime, binc
think = min(wtime / 40 + winc, wtime / 2 - 1)
start = time.time()
move_str = None
for depth, gamma, score, move in Searcher().search(hist):
# The only way we can be sure to have the real move in tp_move,
# is if we have just failed high.
if score >= gamma:
i, j = move.i, move.j
if len(hist) % 2 == 0:
i, j = 119 - i, 119 - j
move_str = render(i) + render(j) + move.prom.lower()
print("info depth", depth, "score cp", score, "pv", move_str)
if move_str and time.time() - start > think * 0.8:
break
print("bestmove", move_str or '(none)')