Fix trace equivalence for infinite isometries #4166
Annotations
1 warning
../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2317 docstrings not included in the manual:
gen :: Tuple{FqField}
gen :: Tuple{AnticNumberField}
gen :: Tuple{FqPolyRepField}
_species_list :: Tuple{ZZLocalGenus}
exponent :: Union{Tuple{ClassField{S, T}}, Tuple{T}, Tuple{S}} where {S, T}
exponent :: Tuple{TorQuadModule}
is_rational :: Tuple{qqbar}
is_rational :: Tuple{ca}
is_rational :: Tuple{nf_elem}
>> :: Tuple{ZZMatrix, Int64}
>> :: Tuple{ZZRingElem, Int64}
>> :: Tuple{QQFieldElem, Int64}
local_factor :: Tuple{HermLat, Any}
PuiseuxSeriesRing :: Tuple{ZZRing, Int64, Union{Char, AbstractString, Symbol}}
signature_tuple :: Tuple{Hecke.QuadSpace{QQField, QQMatrix}}
signature_tuple :: Tuple{Hecke.QuadSpace, InfPlc}
signature_tuple :: Tuple{ZZGenus}
basis_pmatrix_wrt :: Tuple{Hecke.AlgAssRelOrdIdl, Hecke.AlgAssRelOrd}
lower_bound :: Tuple{arb, Type{ZZRingElem}}
fmpz
iscanonical
continued_fraction_with_matrix :: Tuple{arb}
symbol :: Tuple{ZZLocalGenus}
is_primitive_root :: Tuple{AbstractAlgebra.Generic.ResidueRingElem{ZZRingElem}, ZZRingElem, Fac{ZZRingElem}}
isomorphism_to_isogeny :: Tuple{Hecke.EllCrvIso}
_quadratic_form_solve_triv :: Tuple{MatElem{ZZRingElem}}
is_divisible :: Tuple{Hecke.AbsAlgAssElem, Hecke.AbsAlgAssElem, Symbol}
bessel_k :: Tuple{acb, acb}
bessel_k :: Union{Tuple{ComplexFieldElem, ComplexFieldElem}, Tuple{ComplexFieldElem, ComplexFieldElem, Int64}}
cansolve_with_nullspace :: Tuple{ZZMatrix, ZZMatrix}
fmpz_mod_mat
is_nonzero :: Tuple{arb}
is_nonzero :: Tuple{RealFieldElem}
minimal_submodules :: Union{Tuple{Hecke.ModAlgAss{S, T, V}}, Tuple{V}, Tuple{T}, Tuple{S}, Tuple{Hecke.ModAlgAss{S, T, V}, Int64}, Tuple{Hecke.ModAlgAss{S, T, V}, Int64, Any}} where {S, T, V}
setbit! :: Tuple{ZZRingElem, Int64}
finite_divisor :: Tuple{Divisor}
factor_base_bound_minkowski :: Tuple{NfOrd}
zzModMatrixSpace
ZZRingElem :: Tuple{qqbar}
ZZRingElem
ZZRingElem :: Tuple{arb}
ZZRingElem :: Tuple{RealFieldElem}
cansolve :: Tuple{ZZMatrix, ZZMatrix}
FqAbsSeriesRing
id :: Tuple{GrpGen}
id :: Tuple{TorQuadModule}
agm :: Tuple{arb, arb}
agm :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}}
agm :: Union{Tuple{RealFieldElem, RealFieldElem}, Tuple{RealFieldElem, RealFieldElem, Int64}}
agm :: Tuple{acb}
agm :: Tuple{ComplexFieldElem, ComplexFieldElem}
agm :: Tuple{acb, acb}
isinfinite
rgamma :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}}
rgamma :: Tuple{acb}
rgamma :: Union{Tuple{RealFieldElem}, Tuple{RealFieldElem, Int64}}
rgamma :: Tuple{arb}
_complete_to_basis :: Union{Tuple{MatElem{ZZRingElem}}, Tuple{MatElem{ZZRingElem}, Bool}}
rels_from_partial :: Tuple{Int64, Int64}
kronecker_symbol :: Tuple{Int64, Int64}
is_isomorphic_with_map :: Tuple{AnticNumberField, AnticNumberField}
is_isomorphic_with_map :: Union{Tuple{T}, Tuple{T, T}} where T<:Union{Hecke.NfAbsOrdFracIdl{AnticNumberField, nf_elem}, Hecke.AlgAssAbsOrdIdl, NfAbsOrdIdl}
compose :: Tuple{Isogeny, Isogeny}
compose :: Tuple{QuadBin{ZZRingElem}, QuadBin{ZZRingElem}}
compose :: Tuple{Vector{Isogeny}}
compose :: Tuple{TorQuadModuleMor, TorQuadModuleMor}
TorQuadModuleMor
eisenstein_g :: Tuple{Int64, acb}
eisenstein_g :: Union{Tuple{Int64, ComplexFieldElem}, Tuple{Int64, ComplexFieldElem, Int64}}
base_change :: Tuple{Field, HypellCrv}
fq_default_mat
conj :: Tuple{qqbar}
conj :: Tuple{ca}
isinvolution
inertia_subgroup :: Tuple{ClassField, NfOrdIdl}
complex_conjugation :: Tuple{ClassField, InfPlc}
NmodMatSpace
proper_spinor_generators :: Tuple{ZZGenus}
genus :: Tuple{AbstractAlgebra.Generic.FunctionField}
genus :: Tuple{MatElem, Any}
genus :: Tuple{HermLat}
genus :: Tuple{Type{HermLat}, Any, Any, Any}
genus :: Union{Tuple{HypellCrv{T}}, Tuple{T}} where T
genus :: Tuple{HermLat, Any}
genus :: Tuple{Vector{HermLocalGenus}, Any}
genus :: Tuple{Hecke.JorDec}
is_a
|
The logs for this run have expired and are no longer available.
Loading