This repository has been archived by the owner on Sep 24, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRegressionTree.py
117 lines (102 loc) · 3.14 KB
/
RegressionTree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#Aaron Kannangara, s1366106, University Leiden, Liacs.
#This program can be called and is used to run
#GP and randomsearch on a given file name.
#The results are published in a plot if the flag is set.
#FLAGS:
#-f to define dataset file name, name should be provided after -f
#-d second fileinput
#-i third fileinput
#-e is to run multiple experiments and take average and find standard deviation
#-g is used to run guassian process experiment
#-r used to run random search experiment
#-n used to define nr_calls
#-s will save the plot
import sys
import argparse
import numpy as np
from GuassianProcess import GaussianProcess
from RandomSearch import RandomSearch
import matplotlib.pyplot as plt
def convergenceStdGroups(groupings, nr_calls):
res_g = []
#groups results per call together
for n in range(nr_calls):
res_n = []
for g in groupings:
res_n.append(g[n])
res_g.append(res_n)
del res_n
#find average and standard deviation for each n
res = []
std = []
for r in res_g:
std.append(np.std(r))
res.append(np.mean(r))
return res, std
def addToPlot(y, std, label):
if std == None:
plt.plot(y, label=label)
else:
data = {
'x': list(range(1, len(y) + 1)),
'y1': [Y - e for Y, e, in zip(y,std)],
'y2': [Y + e for Y, e, in zip(y,std)]
}
x=np.arange(1, len(y) + 1, step=1)
plt.errorbar(x=x, y=y, label=label, yerr=std)
plt.fill_between(**data, alpha=0.25)
def makePlot(save, name):
plt.legend(loc="best")
plt.xlabel("Function evaluations")
plt.ylabel("Min F(x)")
plt.title("")
plt.grid(which='both', axis='y')
#plt.ylim(None,0)
if save:
plt.savefig(name)
else:
plt.show()
def runExperiments(args):
if args.RS:
RS = RandomSearch(args.filename, args.nr_calls)
if args.experiment:
RS_res = RS.run_groups()
mean, std = convergenceStdGroups(RS_res, args.nr_calls)
addToPlot(mean, std, "Random Search")
else:
RS_res = RS.run()
addToPlot(RS_res, None, "Random Search")
if args.GP:
GP = GaussianProcess(args.filename, args.nr_calls)
if args.experiment:
GP_res = GP.run_groups()
mean, std = convergenceStdGroups(GP_res, args.nr_calls)
addToPlot(mean, std, "GP")
else:
GP_res = GP.run()
addToPlot(GP_res, None, "GP")
if args.plot:
name = "results/"+str(args.nr_calls)+"_"
if args.GP:
name+="GP_"
if args.RS:
name+="RS_"
name+=args.filename[:-4]+".jpg"
makePlot(args.save, name)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-f", "--filename", required=True)
parser.add_argument("-d", "--filename2", required=False)
parser.add_argument("-i", "--filename3", required=False)
parser.add_argument("-g", "--GP", action="store_true", default=False)
parser.add_argument("-r", "--RS", action="store_true", default=False)
parser.add_argument("-p","--plot", action="store_true", default=False)
parser.add_argument("-e","--experiment", action="store_true",
default=False)
parser.add_argument("-s","--save", action="store_true", default=False)
parser.add_argument("-n","--nr_calls", required=True, type=int)
args = parser.parse_args()
if (not(args.GP) and not(args.RS)):
print("Error: no test has been specified")
exit()
runExperiments(args)