-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlib_evaluation.py
316 lines (250 loc) · 11 KB
/
lib_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Copyright 2020 The Magenta Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Helpers for evaluating the log likelihood of pianorolls under a model."""
import time
import numpy as np
import tensorflow.compat.v1 as tf
from magenta.models.coconet import lib_tfutil, lib_util
from scipy.special import logsumexp
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
def evaluate(evaluator, pianorolls):
"""Evaluate a sequence of pianorolls.
The returned dictionary contains two kinds of evaluation results: the "unit"
losses and the "example" losses. The unit loss measures the negative
log-likelihood of each unit (e.g. note or frame). The example loss is the
average of the unit loss across the example. Additionally, the dictionary
contains various aggregates such as the mean and standard error of the mean
of both losses, as well as min/max and quartile bounds.
Args:
evaluator: an instance of BaseEvaluator
pianorolls: sequence of pianorolls to evaluate
Returns:
A dictionary with evaluation results.
"""
example_losses = []
unit_losses = []
for pi, pianoroll in enumerate(pianorolls):
tf.logging.info("evaluating piece %d", pi)
start_time = time.time()
unit_loss = -evaluator(pianoroll)
example_loss = np.mean(unit_loss)
example_losses.append(example_loss)
unit_losses.append(unit_loss)
duration = (time.time() - start_time) / 60.
_report(unit_loss, prefix="%i %5.2fmin " % (pi, duration))
if np.isinf(example_loss):
break
_report(example_losses, prefix="FINAL example-level ")
_report(unit_losses, prefix="FINAL unit-level ")
rval = dict(example_losses=example_losses, unit_losses=unit_losses)
rval.update(("example_%s" % k, v)
for k, v in _stats(example_losses).items())
rval.update(
("unit_%s" % k, v) for k, v in _stats(_flatcat(unit_losses)).items())
return rval
def _report(losses, prefix=""):
tf.logging.info("%s loss %s", prefix, _statstr(_flatcat(losses)))
def _stats(x):
return dict(
mean=np.mean(x),
sem=np.std(x) / np.sqrt(len(x)),
min=np.min(x),
max=np.max(x),
q1=np.percentile(x, 25),
q2=np.percentile(x, 50),
q3=np.percentile(x, 75))
def _statstr(x):
return ("mean/sem: {mean:8.5f}+-{sem:8.5f} {min:.5f} < {q1:.5f} < {q2:.5f} < "
"{q3:.5f} < {max:.5g}").format(**_stats(x))
def _flatcat(xs):
return np.concatenate([x.flatten() for x in xs])
class BaseEvaluator(lib_util.Factory):
"""Evaluator base class."""
def __init__(self, wmodel, chronological):
"""Initialize BaseEvaluator instance.
Args:
wmodel: WrappedModel instance
chronological: whether to evaluate in chronological order or in any order
"""
self.wmodel = wmodel
self.chronological = chronological
def predictor(pianorolls, masks):
p = self.wmodel.sess.run(
self.wmodel.model.predictions,
feed_dict={
self.wmodel.model.pianorolls: pianorolls,
self.wmodel.model.masks: masks
})
return p
self.predictor = lib_tfutil.RobustPredictor(predictor)
@property
def hparams(self):
return self.wmodel.hparams
@property
def separate_instruments(self):
return self.wmodel.hparams.separate_instruments
def __call__(self, pianoroll):
"""Evaluate a single pianoroll.
Args:
pianoroll: a single pianoroll, shaped (tt, pp, ii)
Returns:
unit losses
"""
raise NotImplementedError()
def _update_lls(self, lls, x, pxhat, t, d):
"""Update accumulated log-likelihoods.
Note: the shape of `lls` and the range of `d` depends on the "number of
variables per time step" `dd`, which is the number of instruments if
instruments if instruments are separated or the number of pitches otherwise.
Args:
lls: (tt, dd)-shaped array of unit log-likelihoods.
x: the pianoroll being evaluated, shape (B, tt, P, I).
pxhat: the probabilities output by the model, shape (B, tt, P, I).
t: the batch of time indices being evaluated, shape (B,).
d: the batch of variable indices being evaluated, shape (B,).
"""
# The code below assumes x is binary, so instead of x * log(px) which is
# inconveniently NaN if both x and log(px) are zero, we can use
# where(x, log(px), 0).
assert np.array_equal(x, x.astype(bool))
if self.separate_instruments:
index = (np.arange(x.shape[0]), t, slice(None), d)
else:
index = (np.arange(x.shape[0]), t, d, slice(None))
lls[t, d] = np.log(np.where(x[index], pxhat[index], 1)).sum(axis=1)
class FrameEvaluator(BaseEvaluator):
"""Framewise evaluator.
Evaluates pianorolls one frame at a time. That is, the model is judged for its
prediction of entire frames at a time, conditioning on its own samples rather
than the ground truth of other instruments/pitches in the same frame.
The frames are evaluated in random order, and within each frame the
instruments/pitches are evaluated in random order.
"""
key = "frame"
def __call__(self, pianoroll):
tt, pp, ii = pianoroll.shape
assert self.separate_instruments or ii == 1
dd = ii if self.separate_instruments else pp
# Compile a batch with each frame being an example.
bb = tt
xs = np.tile(pianoroll[None], [bb, 1, 1, 1])
ts, ds = self.draw_ordering(tt, dd)
# Set up sequence of masks to predict the first (according to ordering)
# instrument for each frame
mask = []
mask_scratch = np.ones([tt, pp, ii], dtype=np.float32)
for j, (t, d) in enumerate(zip(ts, ds)):
# When time rolls over, reveal the entire current frame for purposes of
# predicting the next one.
if j % dd != 0:
continue
mask.append(mask_scratch.copy())
mask_scratch[t, :, :] = 0
assert np.allclose(mask_scratch, 0)
del mask_scratch
mask = np.array(mask)
lls = np.zeros([tt, dd], dtype=np.float32)
# We can't parallelize within the frame, as we need the predictions of
# some of the other instruments.
# Hence we outer loop over the instruments and parallelize across frames.
xs_scratch = xs.copy()
for d_idx in range(dd):
# Call out to the model to get predictions for the first instrument
# at each time step.
pxhats = self.predictor(xs_scratch, mask)
t, d = ts[d_idx::dd], ds[d_idx::dd]
assert len(t) == bb and len(d) == bb
# Write in predictions and update mask.
if self.separate_instruments:
xs_scratch[np.arange(bb), t, :, d] = np.eye(pp)[np.argmax(
pxhats[np.arange(bb), t, :, d], axis=1)]
mask[np.arange(bb), t, :, d] = 0
# Every example in the batch sees one frame more than the previous.
assert np.allclose(
(1 - mask).sum(axis=(1, 2, 3)),
[(k * dd + d_idx + 1) * pp for k in range(mask.shape[0])])
else:
xs_scratch[np.arange(bb), t, d, :] = (
pxhats[np.arange(bb), t, d, :] > 0.5)
mask[np.arange(bb), t, d, :] = 0
# Every example in the batch sees one frame more than the previous.
assert np.allclose(
(1 - mask).sum(axis=(1, 2, 3)),
[(k * dd + d_idx + 1) * ii for k in range(mask.shape[0])])
self._update_lls(lls, xs, pxhats, t, d)
# conjunction over notes within frames; frame is the unit of prediction
return lls.sum(axis=1)
def draw_ordering(self, tt, dd):
o = np.arange(tt, dtype=np.int32)
if not self.chronological:
np.random.shuffle(o)
# random variable orderings within each time step
o = o[:, None] * dd + np.arange(dd, dtype=np.int32)[None, :]
for t in range(tt):
np.random.shuffle(o[t])
o = o.reshape([tt * dd])
ts, ds = np.unravel_index(o.T, shape=(tt, dd))
return ts, ds
class NoteEvaluator(BaseEvaluator):
"""Evalutes note-based negative likelihood."""
key = "note"
def __call__(self, pianoroll):
tt, pp, ii = pianoroll.shape
assert self.separate_instruments or ii == 1
dd = ii if self.separate_instruments else pp
# compile a batch with an example for each variable
bb = tt * dd
xs = np.tile(pianoroll[None], [bb, 1, 1, 1])
ts, ds = self.draw_ordering(tt, dd)
assert len(ts) == bb and len(ds) == bb
# set up sequence of masks, one for each variable
mask = []
mask_scratch = np.ones([tt, pp, ii], dtype=np.float32)
for unused_j, (t, d) in enumerate(zip(ts, ds)):
mask.append(mask_scratch.copy())
if self.separate_instruments:
mask_scratch[t, :, d] = 0
else:
mask_scratch[t, d, :] = 0
assert np.allclose(mask_scratch, 0)
del mask_scratch
mask = np.array(mask)
pxhats = self.predictor(xs, mask)
lls = np.zeros([tt, dd], dtype=np.float32)
self._update_lls(lls, xs, pxhats, ts, ds)
return lls
def _draw_ordering(self, tt, dd):
o = np.arange(tt * dd, dtype=np.int32)
if not self.chronological:
np.random.shuffle(o)
ts, ds = np.unravel_index(o.T, shape=(tt, dd))
return ts, ds
class EnsemblingEvaluator(object):
"""Decorating for ensembled evaluation.
Calls the decorated evaluator multiple times so as to evaluate according to
multiple orderings. The likelihoods from different orderings are averaged
in probability space, which gives a better result than averaging in log space
(which would correspond to a geometric mean that is unnormalized and tends
to waste probability mass).
"""
key = "_ensembling"
def __init__(self, evaluator, ensemble_size):
self.evaluator = evaluator
self.ensemble_size = ensemble_size
def __call__(self, pianoroll):
lls = [self.evaluator(pianoroll) for _ in range(self.ensemble_size)]
return logsumexp(lls, b=1. / len(lls), axis=0)