-
Notifications
You must be signed in to change notification settings - Fork 185
/
BlitSquare.h
170 lines (138 loc) · 5.56 KB
/
BlitSquare.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#ifndef STK_BLITSQUARE_H
#define STK_BLITSQUARE_H
#include "Generator.h"
#include <cmath>
#include <limits>
namespace stk {
/***************************************************/
/*! \class BlitSquare
\brief STK band-limited square wave class.
This class generates a band-limited square wave signal. It is
derived in part from the approach reported by Stilson and Smith in
"Alias-Free Digital Synthesis of Classic Analog Waveforms", 1996.
The algorithm implemented in this class uses a SincM function with
an even M value to achieve a bipolar bandlimited impulse train.
This signal is then integrated to achieve a square waveform. The
integration process has an associated DC offset so a DC blocking
filter is applied at the output.
The user can specify both the fundamental frequency of the
waveform and the number of harmonics contained in the resulting
signal.
If nHarmonics is 0, then the signal will contain all harmonics up
to half the sample rate. Note, however, that this setting may
produce aliasing in the signal when the frequency is changing (no
automatic modification of the number of harmonics is performed by
the setFrequency() function). Also note that the harmonics of a
square wave fall at odd integer multiples of the fundamental, so
aliasing will happen with a lower fundamental than with the other
Blit waveforms. This class is not guaranteed to be well behaved
in the presence of significant aliasing.
Based on initial code of Robin Davies, 2005.
Modified algorithm code by Gary Scavone, 2005--2006.
*/
/***************************************************/
class BlitSquare: public Generator
{
public:
//! Default constructor that initializes BLIT frequency to 220 Hz.
BlitSquare( StkFloat frequency = 220.0 );
//! Class destructor.
~BlitSquare();
//! Resets the oscillator state and phase to 0.
void reset();
//! Set the phase of the signal.
/*!
Set the phase of the signal, in the range 0 to 1.
*/
void setPhase( StkFloat phase ) { phase_ = PI * phase; };
//! Get the current phase of the signal.
/*!
Get the phase of the signal, in the range [0 to 1.0).
*/
StkFloat getPhase() const { return phase_ / PI; };
//! Set the impulse train rate in terms of a frequency in Hz.
void setFrequency( StkFloat frequency );
//! Set the number of harmonics generated in the signal.
/*!
This function sets the number of harmonics contained in the
resulting signal. It is equivalent to (2 * M) + 1 in the BLIT
algorithm. The default value of 0 sets the algorithm for maximum
harmonic content (harmonics up to half the sample rate). This
parameter is not checked against the current sample rate and
fundamental frequency. Thus, aliasing can result if one or more
harmonics for a given fundamental frequency exceeds fs / 2. This
behavior was chosen over the potentially more problematic solution
of automatically modifying the M parameter, which can produce
audible clicks in the signal.
*/
void setHarmonics( unsigned int nHarmonics = 0 );
//! Return the last computed output value.
StkFloat lastOut( void ) const { return lastFrame_[0]; };
//! Compute and return one output sample.
StkFloat tick( void );
//! Fill a channel of the StkFrames object with computed outputs.
/*!
The \c channel argument must be less than the number of
channels in the StkFrames argument (the first channel is specified
by 0). However, range checking is only performed if _STK_DEBUG_
is defined during compilation, in which case an out-of-range value
will trigger an StkError exception.
*/
StkFrames& tick( StkFrames& frames, unsigned int channel = 0 );
protected:
void updateHarmonics( void );
unsigned int nHarmonics_;
unsigned int m_;
StkFloat rate_;
StkFloat phase_;
StkFloat p_;
StkFloat a_;
StkFloat lastBlitOutput_;
StkFloat dcbState_;
};
inline StkFloat BlitSquare :: tick( void )
{
StkFloat temp = lastBlitOutput_;
// A fully optimized version of this would replace the two sin calls
// with a pair of fast sin oscillators, for which stable fast
// two-multiply algorithms are well known. In the spirit of STK,
// which favors clarity over performance, the optimization has
// not been made here.
// Avoid a divide by zero, or use of a denomralized divisor
// at the sinc peak, which has a limiting value of 1.0.
StkFloat denominator = sin( phase_ );
if ( fabs( denominator ) < std::numeric_limits<StkFloat>::epsilon() ) {
// Inexact comparison safely distinguishes betwen *close to zero*, and *close to PI*.
if ( phase_ < 0.1f || phase_ > TWO_PI - 0.1f )
lastBlitOutput_ = a_;
else
lastBlitOutput_ = -a_;
}
else {
lastBlitOutput_ = sin( m_ * phase_ );
lastBlitOutput_ /= p_ * denominator;
}
lastBlitOutput_ += temp;
// Now apply DC blocker.
lastFrame_[0] = lastBlitOutput_ - dcbState_ + 0.999 * lastFrame_[0];
dcbState_ = lastBlitOutput_;
phase_ += rate_;
if ( phase_ >= TWO_PI ) phase_ -= TWO_PI;
return lastFrame_[0];
}
inline StkFrames& BlitSquare :: tick( StkFrames& frames, unsigned int channel )
{
#if defined(_STK_DEBUG_)
if ( channel >= frames.channels() ) {
oStream_ << "BlitSquare::tick(): channel and StkFrames arguments are incompatible!";
handleError( StkError::FUNCTION_ARGUMENT );
}
#endif
StkFloat *samples = &frames[channel];
unsigned int hop = frames.channels();
for ( unsigned int i=0; i<frames.frames(); i++, samples += hop )
*samples = BlitSquare::tick();
return frames;
}
} // stk namespace
#endif