-
Notifications
You must be signed in to change notification settings - Fork 185
/
BiQuad.h
259 lines (216 loc) · 10.5 KB
/
BiQuad.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#ifndef STK_BIQUAD_H
#define STK_BIQUAD_H
#include "Filter.h"
namespace stk {
/***************************************************/
/*! \class BiQuad
\brief STK biquad (two-pole, two-zero) filter class.
This class implements a two-pole, two-zero digital filter.
Methods are provided for creating a resonance or notch in the
frequency response while maintaining a constant filter gain.
Formulae used calculate coefficients for lowpass, highpass,
bandpass, bandreject and allpass are found on pg. 55 of
Udo Zölzer's "DAFX - Digital Audio Effects" (2011 2nd ed).
by Perry R. Cook and Gary P. Scavone, 1995--2023.
*/
/***************************************************/
const StkFloat RECIP_SQRT_2 = static_cast<StkFloat>( M_SQRT1_2 );
class BiQuad : public Filter
{
public:
//! Default constructor creates a second-order pass-through filter.
BiQuad();
//! Class destructor.
~BiQuad();
//! A function to enable/disable the automatic updating of class data when the STK sample rate changes.
void ignoreSampleRateChange( bool ignore = true ) { ignoreSampleRateChange_ = ignore; };
//! Set all filter coefficients.
void setCoefficients( StkFloat b0, StkFloat b1, StkFloat b2, StkFloat a1, StkFloat a2, bool clearState = false );
//! Set the b[0] coefficient value.
void setB0( StkFloat b0 ) { b_[0] = b0; };
//! Set the b[1] coefficient value.
void setB1( StkFloat b1 ) { b_[1] = b1; };
//! Set the b[2] coefficient value.
void setB2( StkFloat b2 ) { b_[2] = b2; };
//! Set the a[1] coefficient value.
void setA1( StkFloat a1 ) { a_[1] = a1; };
//! Set the a[2] coefficient value.
void setA2( StkFloat a2 ) { a_[2] = a2; };
//! Sets the filter coefficients for a resonance at \e frequency (in Hz).
/*!
This method determines the filter coefficients corresponding to
two complex-conjugate poles with the given \e frequency (in Hz)
and \e radius from the z-plane origin. If \e normalize is true,
the filter zeros are placed at z = 1, z = -1, and the coefficients
are then normalized to produce a constant unity peak gain
(independent of the filter \e gain parameter). The resulting
filter frequency response has a resonance at the given \e
frequency. The closer the poles are to the unit-circle (\e radius
close to one), the narrower the resulting resonance width.
An unstable filter will result for \e radius >= 1.0. The
\e frequency value should be between zero and half the sample rate.
*/
void setResonance( StkFloat frequency, StkFloat radius, bool normalize = false );
//! Set the filter coefficients for a notch at \e frequency (in Hz).
/*!
This method determines the filter coefficients corresponding to
two complex-conjugate zeros with the given \e frequency (in Hz)
and \e radius from the z-plane origin. No filter normalization is
attempted. The \e frequency value should be between zero and half
the sample rate. The \e radius value should be positive.
*/
void setNotch( StkFloat frequency, StkFloat radius );
//! Set the filter coefficients for a low-pass with cutoff frequency \e fc (in Hz) and Q-factor \e Q.
/*!
This method determines the filter coefficients corresponding to a
low-pass filter with cutoff placed at \e fc, where sloping behaviour
and resonance are determined by \e Q. The default value for \e Q is
1/sqrt(2), resulting in a gradual attenuation of frequencies higher than
\e fc without added resonance. Values greater than this will more
aggressively attenuate frequencies above \e fc while also adding a
resonance at \e fc. Values less than this will result in a more gradual
attenuation of frequencies above \e fc, but will also attenuate
frequencies below \e fc as well. Both \e fc and \e Q must be positive.
*/
void setLowPass( StkFloat fc, StkFloat Q=RECIP_SQRT_2 );
//! Set the filter coefficients for a high-pass with cutoff frequency \e fc (in Hz) and Q-factor \e Q.
/*!
This method determines the filter coefficients corresponding to a high-pass
filter with cutoff placed at \e fc, where sloping behaviour and resonance
are determined by \e Q. The default value for \e Q is 1/sqrt(2), resulting
in a gradual attenuation of frequencies lower than \e fc without added
resonance. Values greater than this will more aggressively attenuate
frequencies below \e fc while also adding a resonance at \e fc. Values less
than this will result in a more gradual attenuation of frequencies below
\e fc, but will also attenuate frequencies above \e fc as well.
Both \e fc and \e Q must be positive.
*/
void setHighPass( StkFloat fc, StkFloat Q=RECIP_SQRT_2 );
//! Set the filter coefficients for a band-pass centered at \e fc (in Hz) with Q-factor \e Q.
/*!
This method determines the filter coefficients corresponding to a band-pass
filter with pass-band centered at \e fc, where band width and slope a
determined by \e Q. Values for \e Q that are less than 1.0 will attenuate
frequencies above and below \e fc more gradually, resulting in a convex
slope and a wider band. Values for \e Q greater than 1.0 will attenuate
frequencies above and below \e fc more aggressively, resulting in a
concave slope and a narrower band. Both \e fc and \e Q must be positive.
*/
void setBandPass( StkFloat fc, StkFloat Q );
//! Set the filter coefficients for a band-reject centered at \e fc (in Hz) with Q-factor \e Q.
/*!
This method determines the filter coefficients corresponding to a
band-reject filter with stop-band centered at \e fc, where band width
and slope are determined by \e Q. Values for \e Q that are less than 1.0
will yield a wider band with greater attenuation of \e fc. Values for \e Q
greater than 1.0 will yield a narrower band with less attenuation of \e fc.
Both \e fc and \e Q must be positive.
*/
void setBandReject( StkFloat fc, StkFloat Q );
//! Set the filter coefficients for an all-pass centered at \e fc (in Hz) with Q-factor \e Q.
/*!
This method determines the filter coefficients corresponding to
an all-pass filter whose phase response crosses -pi radians at \e fc.
High values for \e Q will result in a more instantaenous shift in phase
response at \e fc. Lower values will result in a more gradual shift in
phase response around \e fc. Both \e fc and \e Q must be positive.
*/
void setAllPass( StkFloat fc, StkFloat Q );
//! Sets the filter zeroes for equal resonance gain.
/*!
When using the filter as a resonator, zeroes places at z = 1, z
= -1 will result in a constant gain at resonance of 1 / (1 - R),
where R is the pole radius setting.
*/
void setEqualGainZeroes( void );
//! Return the last computed output value.
StkFloat lastOut( void ) const { return lastFrame_[0]; };
//! Input one sample to the filter and return a reference to one output.
StkFloat tick( StkFloat input );
//! Take a channel of the StkFrames object as inputs to the filter and replace with corresponding outputs.
/*!
The StkFrames argument reference is returned. The \c channel
argument must be less than the number of channels in the
StkFrames argument (the first channel is specified by 0).
However, range checking is only performed if _STK_DEBUG_ is
defined during compilation, in which case an out-of-range value
will trigger an StkError exception.
*/
StkFrames& tick( StkFrames& frames, unsigned int channel = 0 );
//! Take a channel of the \c iFrames object as inputs to the filter and write outputs to the \c oFrames object.
/*!
The \c iFrames object reference is returned. Each channel
argument must be less than the number of channels in the
corresponding StkFrames argument (the first channel is specified
by 0). However, range checking is only performed if _STK_DEBUG_
is defined during compilation, in which case an out-of-range value
will trigger an StkError exception.
*/
StkFrames& tick( StkFrames& iFrames, StkFrames &oFrames, unsigned int iChannel = 0, unsigned int oChannel = 0 );
protected:
virtual void sampleRateChanged( StkFloat newRate, StkFloat oldRate );
// Helper function to update the three intermediate values for the predefined filter types
// along with the feedback filter coefficients. Performs the debug check for fc and Q-factor arguments.
void setCommonFilterValues( StkFloat fc, StkFloat Q );
StkFloat K_;
StkFloat kSqr_;
StkFloat denom_;
};
inline StkFloat BiQuad :: tick( StkFloat input )
{
inputs_[0] = gain_ * input;
lastFrame_[0] = b_[0] * inputs_[0] + b_[1] * inputs_[1] + b_[2] * inputs_[2];
lastFrame_[0] -= a_[2] * outputs_[2] + a_[1] * outputs_[1];
inputs_[2] = inputs_[1];
inputs_[1] = inputs_[0];
outputs_[2] = outputs_[1];
outputs_[1] = lastFrame_[0];
return lastFrame_[0];
}
inline StkFrames& BiQuad :: tick( StkFrames& frames, unsigned int channel )
{
#if defined(_STK_DEBUG_)
if ( channel >= frames.channels() ) {
oStream_ << "BiQuad::tick(): channel and StkFrames arguments are incompatible!";
handleError( StkError::FUNCTION_ARGUMENT );
}
#endif
StkFloat *samples = &frames[channel];
unsigned int hop = frames.channels();
for ( unsigned int i=0; i<frames.frames(); i++, samples += hop ) {
inputs_[0] = gain_ * *samples;
*samples = b_[0] * inputs_[0] + b_[1] * inputs_[1] + b_[2] * inputs_[2];
*samples -= a_[2] * outputs_[2] + a_[1] * outputs_[1];
inputs_[2] = inputs_[1];
inputs_[1] = inputs_[0];
outputs_[2] = outputs_[1];
outputs_[1] = *samples;
}
lastFrame_[0] = outputs_[1];
return frames;
}
inline StkFrames& BiQuad :: tick( StkFrames& iFrames, StkFrames& oFrames, unsigned int iChannel, unsigned int oChannel )
{
#if defined(_STK_DEBUG_)
if ( iChannel >= iFrames.channels() || oChannel >= oFrames.channels() ) {
oStream_ << "BiQuad::tick(): channel and StkFrames arguments are incompatible!";
handleError( StkError::FUNCTION_ARGUMENT );
}
#endif
StkFloat *iSamples = &iFrames[iChannel];
StkFloat *oSamples = &oFrames[oChannel];
unsigned int iHop = iFrames.channels(), oHop = oFrames.channels();
for ( unsigned int i=0; i<iFrames.frames(); i++, iSamples += iHop, oSamples += oHop ) {
inputs_[0] = gain_ * *iSamples;
*oSamples = b_[0] * inputs_[0] + b_[1] * inputs_[1] + b_[2] * inputs_[2];
*oSamples -= a_[2] * outputs_[2] + a_[1] * outputs_[1];
inputs_[2] = inputs_[1];
inputs_[1] = inputs_[0];
outputs_[2] = outputs_[1];
outputs_[1] = *oSamples;
}
lastFrame_[0] = outputs_[1];
return iFrames;
}
} // stk namespace
#endif