-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRSignTac.v
377 lines (343 loc) · 13.1 KB
/
RSignTac.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
(* Ugly tacty to resolve sign condition for R *)
Require Import RAux.
Require Export RGroundTac.
Require Import List.
Require Import Replace2.
(* Theorems to simplify the goal 0 ? x * y and x * y ? 0 where ? is < > <= >= *)
Definition Rsign_type := fun (x y : list R) => Prop.
Definition Rsign_cons : forall x y, (Rsign_type x y) := fun x y => True.
Ltac Rsign_push term1 term2 := generalize (Rsign_cons term1 term2); intro.
Ltac Rsign_le term :=
match term with
| (?X1 * ?X2)%R =>
Rsign_le X1;
match goal with
| H1: (Rsign_type ?s1 ?s2) |- _ =>
Rsign_le X2;
match goal with
| H2: (Rsign_type ?s3 ?s4) |- _ =>
clear H1 H2;
let s5 := (eval unfold List.app in (s1++s3)) in
let s6 := (eval unfold List.app in (s2++s4)) in
Rsign_push s5 s6
end
end
| _ =>
let H1 := fresh "H" in
((assert (H1: (0 <= term)%R); [auto with real; fail | idtac])
|| (assert (H1: (term <= 0)%R); [auto with real; fail | idtac]); clear H1;
Rsign_push (term::nil) (@nil R)) || Rsign_push (@nil R) (term::nil)
end.
Ltac Rsign_lt term :=
match term with
| (?X1 * ?X2)%R =>
Rsign_lt X1;
match goal with
| H1: (Rsign_type ?s1 ?s2) |- _ =>
Rsign_lt X2;
match goal with
| H2: (Rsign_type ?s3 ?s4) |- _ =>
clear H1 H2;
let s5 := (eval unfold List.app in (s1++s3)) in
let s6 := (eval unfold List.app in (s2++s4)) in
Rsign_push s5 s6
end
end
| _ =>
let H1 := fresh "H" in
((assert (H1: (0 < term)%R); [auto with real; fail | idtac])
|| (assert (H1: (term < 0)%R); [auto with real; fail | idtac]); clear H1;
Rsign_push (term::nil) (@nil R)) || Rsign_push (@nil R) (term::nil)
end.
Ltac Rsign_top0 :=
match goal with
| |- (0 <= ?X1)%R => Rsign_le X1
| |- (?X1 <= 0)%R => Rsign_le X1
| |- (0 < ?X1)%R => Rsign_lt X1
| |- (?X1 < 0)%R => Rsign_le X1
| |- (0 >= ?X1)%R => Rsign_le X1
| |- (?X1 >= 0)%R => Rsign_le X1
| |- (0 > ?X1)%R => Rsign_lt X1
| |- (?X1 > 0)%R => Rsign_le X1
end.
Ltac Rsign_top :=
match goal with
| |- (?X1 * _ <= ?X1 * _)%R => Rsign_le X1
| |- (?X1 * _ < ?X1 * _)%R => Rsign_le X1
| |- (?X1 * _ >= ?X1 * _)%R => Rsign_le X1
| |- (?X1 * _ > ?X1 * _)%R => Rsign_le X1
end.
Ltac Rhyp_sign_top0 H:=
match type of H with
| (0 <= ?X1)%R => Rsign_lt X1
| (?X1 <= 0)%R => Rsign_lt X1
| (0 < ?X1)%R => Rsign_lt X1
| (?X1 < 0)%R => Rsign_lt X1
| (0 >= ?X1)%R => Rsign_lt X1
| (?X1 >= 0)%R => Rsign_lt X1
| (0 > ?X1)%R => Rsign_lt X1
| (?X1 > 0)%R => Rsign_lt X1
end.
Ltac Rhyp_sign_top H :=
match type of H with
| (?X1 * _ <= ?X1 * _)%R => Rsign_lt X1
| (?X1 * _ < ?X1 * _)%R => Rsign_lt X1
| (?X1 * _ >= ?X1 * _)%R => Rsign_lt X1
| (?X1 * _ > ?X1 * _)%R => Rsign_lt X1
| ?X1 => generalize H
end.
Ltac Rsign_get_term g :=
match g with
| (0 <= ?X1)%R => X1
| (?X1 <= 0)%R => X1
| (?X1 * _ <= ?X1 * _)%R => X1
| (0 < ?X1)%R => X1
| (?X1 < 0)%R => X1
| (?X1 * _ < ?X1 * _)%R => X1
| (0 >= ?X1)%R => X1
| (?X1 >= 0)%R => X1
| (?X1 * _ >= ?X1 * _)%R => X1
| (?X1 * _ >= _)%R => X1
| (0 > ?X1)%R => X1
| (?X1 > 0)%R => X1
| (?X1 * _ > ?X1 * _)%R => X1
end.
Ltac Rsign_get_left g :=
match g with
| (_ * ?X1 <= _)%R => X1
| (_ * ?X1 < _)%R => X1
| (_ * ?X1 >= _)%R => X1
| (_ * ?X1 > _)%R => X1
end.
Ltac Rsign_get_right g :=
match g with
| (_ <= _ * ?X1)%R => X1
| (_ < _ * ?X1)%R => X1
| (_ >= _ * ?X1)%R => X1
| (_ > _ * ?X1)%R => X1
end.
Fixpoint mkRprodt (l: list R)(t:R) {struct l}: R :=
match l with nil => t | e::l1 => (e * mkRprodt l1 t)%R end.
Fixpoint mkRprod (l: list R) : R :=
match l with nil => 1%R | e::nil => e | e::l1 => (e * mkRprod l1)%R end.
(* Tactic for 0 ? x * y where ? is < > <= >= *)
Ltac rsign_tac_aux0 :=
match goal with
| |- (0 <= ?X1 * ?X2)%R =>
let H1 := fresh "H" in
(assert (H1: (0 <= X1)%R); auto with real; apply Rle_sign_pos_pos)
|| (assert (H1: (X1 <= 0)%R); auto with real; apply Rle_sign_neg_neg);
try rsign_tac_aux0; clear H1
| |- (?X1 * ?X2 <= 0)%R =>
let H1 := fresh "H" in
(assert (H1: (0 <= X1)%R); auto with real; apply Rle_sign_pos_neg)
|| (assert (H1: (X1 <= 0)%R); auto with real; apply Rle_sign_neg_pos);
try rsign_tac_aux0; clear H1
| |- (0 < ?X1 * ?X2)%R =>
let H1 := fresh "H" in
(assert (H1: (0 < X1)%R); auto with real; apply Rlt_sign_pos_pos)
|| (assert (H1: (X1 < 0)%R); auto with real; apply Rlt_sign_neg_neg);
try rsign_tac_aux0; clear H1
| |- (?X1 * ?X2 < 0)%R =>
let H1 := fresh "H" in
(assert (H1: (0 < X1)%R); auto with real; apply Rlt_sign_pos_neg)
|| (assert (H1: (X1 < 0)%R); auto with real; apply Rlt_sign_neg_pos);
try rsign_tac_aux0; clear H1
| |- (?X1 * ?X2 >= 0)%R =>
let H1 := fresh "H" in
(assert (H1: (0 >= X1)%R); auto with real; apply Rge_sign_neg_neg)
|| (assert (H1: (X1 >= 0)%R); auto with real; apply Rge_sign_pos_pos);
try rsign_tac_aux0; clear H1
| |- (0 >= ?X1 * ?X2)%R =>
let H1 := fresh "H" in
(assert (H1: (X1 >= 0)%R); auto with real; apply Rge_sign_pos_neg)
|| (assert (H1: (0 >= X1)%R); auto with real; apply Rge_sign_neg_pos);
try rsign_tac_aux0; clear H1
| |- (0 > ?X1 * ?X2)%R =>
let H1 := fresh "H" in
(assert (H1: (0 > X1)%R); auto with real; apply Rgt_sign_neg_pos)
|| (assert (H1: (X1 > 0)%R); auto with real; apply Rgt_sign_pos_neg);
try rsign_tac_aux0; clear H1
| |- (?X1 * ?X2 > 0)%R =>
let H1 := fresh "H" in
(assert (H1: (0 > X1)%R); auto with real; apply Rgt_sign_neg_neg)
|| (assert (H1: (X1 > 0)%R); auto with real; apply Rgt_sign_pos_pos);
try rsign_tac_aux0; clear H1
| _ => auto with real; fail 1 "rsign_tac_aux"
end.
Ltac rsign_tac0 :=
Rsign_top0;
match goal with
| H1: (Rsign_type ?s1 ?s2) |- ?g =>
clear H1;
let s := (eval unfold mkRprod, mkRprodt in (mkRprodt s1 (mkRprod s2))) in
let t := Rsign_get_term g in
replace t with s; [try rsign_tac_aux0 | try ring]; auto with real
end.
(* tatic for hyp 0 ? x * y where ? is < > <= >= *)
Ltac hyp_rsign_tac_aux0 H :=
match type of H with
| (0 <= ?X1 * ?X2)%R =>
let H1 := fresh "H" in
((assert (H1: (0 < X1)%R); auto with real; generalize (Rle_sign_pos_pos_rev _ _ H1 H))
|| (assert (H1: (X1 < 0)%R); auto with real; generalize (Rle_sign_neg_neg_rev _ _ H1 H));
clear H; intros H; try hyp_rsign_tac_aux0 H; clear H1)
| (?X1 * ?X2 <= 0)%R =>
let H1 := fresh "H" in
((assert (H1: (0 < X1)%R); auto with real; generalize (Rle_sign_pos_neg_rev _ _ H1 H))
|| (assert (H1: (X1 <= 0)%R); auto with real; generalize (Rle_sign_neg_pos_rev _ _ H1 H));
clear H; intros H; try hyp_rsign_tac_aux0 H; clear H1)
| (0 < ?X1 * ?X2)%R =>
let H1 := fresh "H" in
((assert (H1: (0 < X1)%R); auto with real; generalize (Rlt_sign_pos_pos_rev _ _ H1 H))
|| (assert (H1: (X1 < 0)%R); auto with real; generalize (Rlt_sign_neg_neg_rev _ _ H1 H));
clear H; intros H; try hyp_rsign_tac_aux0 H; clear H1)
| (?X1 * ?X2 < 0)%R =>
let H1 := fresh "H" in
((assert (H1: (0 < X1)%R); auto with real; generalize (Rlt_sign_pos_neg_rev _ _ H1 H))
|| (assert (H1: (X1 < 0)%R); auto with real; generalize (Rlt_sign_neg_pos_rev _ _ H1 H));
clear H; intros H; try hyp_rsign_tac_aux0 H; clear H1)
| (?X1 * ?X2 >= 0)%R =>
let H1 := fresh "H" in
((assert (H1: (0 >X1)%R); auto with real; generalize (Rge_sign_neg_neg_rev _ _ H1 H))
|| (assert (H1: (X1 > 0)%R); auto with real; generalize (Rge_sign_pos_pos _ _ H1 H));
clear H; intros H; try hyp_rsign_tac_aux0 H; clear H1)
| (0 >= ?X1 * ?X2)%R =>
let H1 := fresh "H" in
((assert (H1: (X1 > 0)%R); auto with real; generalize (Rge_sign_pos_neg _ _ H1 H))
|| (assert (H1: (0 > X1)%R); auto with real; generalize (Rge_sign_neg_pos _ _ H1 H));
clear H; intros H; try hyp_rsign_tac_aux0 H; clear H1)
| (0 > ?X1 * ?X2)%R =>
let H1 := fresh "H" in
((assert (H1: (0 > X1)%R); auto with real; generalize (Rgt_sign_neg_pos _ _ H1 H))
|| (assert (H1: (X1 > 0)%R); auto with real; generalize (Rgt_sign_pos_neg _ _ H1 H));
clear H; intros H; try hyp_rsign_tac_aux0 H; clear H1)
| (?X1 * ?X2 > 0)%R =>
let H1 := fresh "H" in
((assert (H1: (0 > X1)%R); auto with real; generalize (Rgt_sign_neg_neg _ _ H1 H))
|| (assert (H1: (X1 > 0)%R); auto with real; generalize (Rgt_sign_pos_pos _ _ H1 H));
clear H; intros H; try hyp_rsign_tac_aux0 H; clear H1)
| _ => auto with real; fail 1 "hyp_rsign_tac_aux0"
end.
Ltac hyp_rsign_tac0 H :=
Rhyp_sign_top0 H;
match goal with
| H1: (Rsign_type ?s1 ?s2) |- ?g =>
clear H1;
let s := (eval unfold mkRprod, mkRprodt in (mkRprodt s1 (mkRprod s2))) in
let t := Rsign_get_term g in
replace t with s in H; [try hyp_rsign_tac_aux0 H | try ring];
auto with real
end.
(* Tactic for goal x1 * x2 ? x1 * x3 where ? is < > <= >= *)
Ltac rsign_tac_aux :=
match goal with
| |- (?X1 * ?X2 <= ?X1 * ?X3)%R =>
let H1 := fresh "H" in
(assert (H1: (0 <= X1)%R); auto with real; apply Rmult_le_compat_l)
|| (assert (H1: (X1 <= 0)%R); auto with real; apply Rmult_le_neg_compat_l);
try rsign_tac_aux; clear H1
| |- (?X1 * ?X2 < ?X1 * ?X3)%R =>
let H1 := fresh "H" in
(assert (H1: (0 <= X1)%R); auto with real; apply Rmult_lt_compat_l)
|| (assert (H1: (X1 <= 0)%R); auto with real; apply Rmult_lt_neg_compat_l);
try rsign_tac_aux; clear H1
| |- (?X1 * ?X2 >= ?X1 * ?X3)%R =>
let H1 := fresh "H" in
(assert (H1: (X1 >= 0)%R); auto with real; apply Rmult_ge_compat_l)
|| (assert (H1: (0 >= X1)%R); auto with real; apply Rmult_ge_neg_compat_l);
try rsign_tac_aux; clear H1
| |- (?X1 * ?X2 > ?X1 * ?X3)%R =>
let H1 := fresh "H" in
(assert (H1: (0 <= X1)%R); auto with real; apply Rmult_lt_compat_l)
|| (assert (H1: (X1 <= 0)%R); auto with real; apply Rmult_lt_neg_compat_l);
try rsign_tac_aux; clear H1
| _ => auto with real; fail 1 "Rsign_tac_aux"
end.
Ltac rsign_tac :=
rsign_tac0
|| (Rsign_top;
match goal with
| H1: (Rsign_type ?s1 ?s2) |- ?g =>
clear H1;
let s := (eval unfold mkRprod, mkRprodt in
(mkRprodt s1 (mkRprod s2)))
in
let t := Rsign_get_term g in
let l := Rsign_get_left g in
let r := Rsign_get_right g in
let sl := (eval unfold mkRprod, mkRprodt in
(mkRprodt s1 (Rmult (mkRprod s2) l)))
in
let sr := (eval unfold mkRprod, mkRprodt in
(mkRprodt s1 (Rmult (mkRprod s2) r)))
in
replace2_tac (Rmult t l) (Rmult t r) sl sr; [rsign_tac_aux | ring | ring]
end).
(* Tactic for hyp x1 * x2 ? x1 * x3 where ? is < > <= >= *)
Ltac hyp_rsign_tac_aux H :=
match type of H with
| (?X1 * ?X2 <= ?X1 * ?X3)%R =>
let H1 := fresh "H" in
(assert (H1: (0 < X1)%R); auto with real; generalize (Rmult_le_compat_l_rev _ _ _ H1 H))
|| (assert (H1: (X1 < 0)%R); auto with real; generalize (Rmult_le_neg_compat_l_rev _ _ _ H1 H));
clear H; intros H; try hyp_rsign_tac_aux H; clear H1
| (?X1 * ?X2 < ?X1 * ?X3)%R =>
let H1 := fresh "H" in
(assert (H1: (0 < X1)%R); auto with real; generalize (Rmult_lt_compat_l_rev _ _ _ H1 H))
|| (assert (H1: (X1 < 0)%R); auto with real; generalize (Rmult_lt_neg_compat_l_rev _ _ _ H1 H));
clear H; intros H; try hyp_rsign_tac_aux H; clear H1
| (?X1 * ?X2 >= ?X1 * ?X3)%R =>
let H1 := fresh "H" in
(assert (H1: (X1 > 0)%R); auto with real; generalize (Rmult_ge_compat_l_rev _ _ _ H1 H))
|| (assert (H1: (0 > X1)%R); auto with real; generalize (Rmult_ge_neg_compat_l_rev _ _ _ H1 H));
clear H; intros H; try hyp_rsign_tac_aux H; clear H1
| (?X1 * ?X2 > ?X1 * ?X3)%R =>
let H1 := fresh "H" in
(assert (H1: (0 < X1)%R); auto with real; generalize (Rmult_gt_compat_l_rev _ _ _ H1 H))
|| (assert (H1: (X1 < 0)%R); auto with real; generalize (Rmult_gt_neg_compat_l_rev _ _ _ H1 H));
clear H; intros H; try hyp_rsign_tac_aux H; clear H1
| _ => auto with real; fail 0 "Rhyp_sign_tac_aux"
end.
Ltac hyp_rsign_tac H :=
hyp_rsign_tac0 H
|| (Rhyp_sign_top H;
match goal with
| H1: (Rsign_type ?s1 ?s2) |- _ =>
clear H1;
let s := (eval unfold mkRprod, mkRprodt in
(mkRprodt s1 (mkRprod s2)))
in
let g := type of H in
let t := Rsign_get_term g in
let l := Rsign_get_left g in
let r := Rsign_get_right g in
let sl := (eval unfold mkRprod, mkRprodt in
(mkRprodt s1 (Rmult (mkRprod s2) l)))
in
let sr := (eval unfold mkRprod, mkRprodt in
(mkRprodt s1 (Rmult (mkRprod s2) r)))
in
generalize H; replace2_tac (Rmult t l) (Rmult t r) sl sr;
[clear H; intros H; try hyp_rsign_tac_aux H | ring | ring]
end).
Section Test.
Let test1 : forall a b c, (0 < a -> a * b < a * c -> b < c)%R.
Proof.
intros a b c H1 H2.
hyp_rsign_tac H2.
Qed.
Let test2 : forall a b c, (a < 0 -> a * b < a * c -> c < b)%R.
Proof.
intros a b c H1 H2.
hyp_rsign_tac H2.
Qed.
Let test3 : forall a b c, (0 < a -> a * b <= a * c -> b <= c)%R.
intros a b c H1 H2.
hyp_rsign_tac H2.
Qed.
Let test4 : forall a b c, (0 > a -> (a * b) >= (a * c) -> c >= b)%R.
intros a b c H1 H2.
hyp_rsign_tac H2.
Qed.
End Test.