-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathk_means.py
63 lines (56 loc) · 1.23 KB
/
k_means.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import pandas as pd
import numpy as np
import statistics as st
import random
inp = [22,9,12,15,10,27,35,18,36,11]
k = int(input("Enter the value of k => "))
randomValue = []
for i in range(0, k):
rand = inp[random.randint(0, len(inp)-1)]
if rand not in randomValue:
randomValue.append(rand)
print(randomValue)
def distance(a,b):
return abs(a-b)
def itr(randomValue):
global c1
global c2
global c3
c1=[]
c2=[]
c3=[]
lst = []
for i in inp:
d1 = distance(i,randomValue[0])
d2 = distance(i,randomValue[1])
d3 = distance(i,randomValue[2])
val = {"d1":d1,"d2":d2,"d3":d3}
minValue = sorted(val.items(), key=lambda t: t[1])[0][0]
if minValue == "d1":
c1.append(i)
elif minValue == "d2":
c2.append(i)
else: c3.append(i)
# print(c1)
# print(c2)
# print(c3)
c1 = np.array(c1)
c2 = np.array(c2)
c3 = np.array(c3)
c1_mean = np.mean(c1)
c2_mean = np.mean(c2)
c3_mean = np.mean(c3)
c1 = list(c1)
c2 = list(c2)
c3 = list(c3)
lst.append(c1_mean)
lst.append(c2_mean)
lst.append(c3_mean)
# print(c1_mean,c2_mean,c3_mean)
return lst
prev_lst = []
new_lst = itr(randomValue)
while prev_lst != new_lst:
prev_lst = new_lst
new_lst = itr(new_lst)
print(c1, c2, c3)