forked from fangchangma/self-supervised-depth-completion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
205 lines (181 loc) · 7.35 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import resnet
def init_weights(m):
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
m.weight.data.normal_(0, 1e-3)
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.ConvTranspose2d):
m.weight.data.normal_(0, 1e-3)
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def conv_bn_relu(in_channels, out_channels, kernel_size, \
stride=1, padding=0, bn=True, relu=True):
bias = not bn
layers = []
layers.append(
nn.Conv2d(in_channels,
out_channels,
kernel_size,
stride,
padding,
bias=bias))
if bn:
layers.append(nn.BatchNorm2d(out_channels))
if relu:
layers.append(nn.LeakyReLU(0.2, inplace=True))
layers = nn.Sequential(*layers)
# initialize the weights
for m in layers.modules():
init_weights(m)
return layers
def convt_bn_relu(in_channels, out_channels, kernel_size, \
stride=1, padding=0, output_padding=0, bn=True, relu=True):
bias = not bn
layers = []
layers.append(
nn.ConvTranspose2d(in_channels,
out_channels,
kernel_size,
stride,
padding,
output_padding,
bias=bias))
if bn:
layers.append(nn.BatchNorm2d(out_channels))
if relu:
layers.append(nn.LeakyReLU(0.2, inplace=True))
layers = nn.Sequential(*layers)
# initialize the weights
for m in layers.modules():
init_weights(m)
return layers
class DepthCompletionNet(nn.Module):
def __init__(self, args):
assert (
args.layers in [18, 34, 50, 101, 152]
), 'Only layers 18, 34, 50, 101, and 152 are defined, but got {}'.format(
layers)
super(DepthCompletionNet, self).__init__()
self.modality = args.input
if 'd' in self.modality:
channels = 64 // len(self.modality)
self.conv1_d = conv_bn_relu(1,
channels,
kernel_size=3,
stride=1,
padding=1)
if 'rgb' in self.modality:
channels = 64 * 3 // len(self.modality)
self.conv1_img = conv_bn_relu(3,
channels,
kernel_size=3,
stride=1,
padding=1)
elif 'g' in self.modality:
channels = 64 // len(self.modality)
self.conv1_img = conv_bn_relu(1,
channels,
kernel_size=3,
stride=1,
padding=1)
pretrained_model = resnet.__dict__['resnet{}'.format(
args.layers)](pretrained=args.pretrained)
if not args.pretrained:
pretrained_model.apply(init_weights)
#self.maxpool = pretrained_model._modules['maxpool']
self.conv2 = pretrained_model._modules['layer1']
self.conv3 = pretrained_model._modules['layer2']
self.conv4 = pretrained_model._modules['layer3']
self.conv5 = pretrained_model._modules['layer4']
del pretrained_model # clear memory
# define number of intermediate channels
if args.layers <= 34:
num_channels = 512
elif args.layers >= 50:
num_channels = 2048
self.conv6 = conv_bn_relu(num_channels,
512,
kernel_size=3,
stride=2,
padding=1)
# decoding layers
kernel_size = 3
stride = 2
self.convt5 = convt_bn_relu(in_channels=512,
out_channels=256,
kernel_size=kernel_size,
stride=stride,
padding=1,
output_padding=1)
self.convt4 = convt_bn_relu(in_channels=768,
out_channels=128,
kernel_size=kernel_size,
stride=stride,
padding=1,
output_padding=1)
self.convt3 = convt_bn_relu(in_channels=(256 + 128),
out_channels=64,
kernel_size=kernel_size,
stride=stride,
padding=1,
output_padding=1)
self.convt2 = convt_bn_relu(in_channels=(128 + 64),
out_channels=64,
kernel_size=kernel_size,
stride=stride,
padding=1,
output_padding=1)
self.convt1 = convt_bn_relu(in_channels=128,
out_channels=64,
kernel_size=kernel_size,
stride=1,
padding=1)
self.convtf = conv_bn_relu(in_channels=128,
out_channels=1,
kernel_size=1,
stride=1,
bn=False,
relu=False)
def forward(self, x):
# first layer
if 'd' in self.modality:
conv1_d = self.conv1_d(x['d'])
if 'rgb' in self.modality:
conv1_img = self.conv1_img(x['rgb'])
elif 'g' in self.modality:
conv1_img = self.conv1_img(x['g'])
if self.modality == 'rgbd' or self.modality == 'gd':
conv1 = torch.cat((conv1_d, conv1_img), 1)
else:
conv1 = conv1_d if (self.modality == 'd') else conv1_img
conv2 = self.conv2(conv1)
conv3 = self.conv3(conv2) # batchsize * ? * 176 * 608
conv4 = self.conv4(conv3) # batchsize * ? * 88 * 304
conv5 = self.conv5(conv4) # batchsize * ? * 44 * 152
conv6 = self.conv6(conv5) # batchsize * ? * 22 * 76
# decoder
convt5 = self.convt5(conv6)
y = torch.cat((convt5, conv5), 1)
convt4 = self.convt4(y)
y = torch.cat((convt4, conv4), 1)
convt3 = self.convt3(y)
y = torch.cat((convt3, conv3), 1)
convt2 = self.convt2(y)
y = torch.cat((convt2, conv2), 1)
convt1 = self.convt1(y)
y = torch.cat((convt1, conv1), 1)
y = self.convtf(y)
if self.training:
return 100 * y
else:
min_distance = 0.9
return F.relu(
100 * y - min_distance
) + min_distance # the minimum range of Velodyne is around 3 feet ~= 0.9m