forked from fangchangma/self-supervised-depth-completion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
354 lines (322 loc) · 13.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import argparse
import os
import time
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data
from dataloaders.kitti_loader import load_calib, oheight, owidth, input_options, KittiDepth
from model import DepthCompletionNet
from metrics import AverageMeter, Result
import criteria
import helper
from inverse_warp import Intrinsics, homography_from
parser = argparse.ArgumentParser(description='Sparse-to-Dense')
parser.add_argument('-w',
'--workers',
default=4,
type=int,
metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs',
default=11,
type=int,
metavar='N',
help='number of total epochs to run (default: 11)')
parser.add_argument('--start-epoch',
default=0,
type=int,
metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-c',
'--criterion',
metavar='LOSS',
default='l2',
choices=criteria.loss_names,
help='loss function: | '.join(criteria.loss_names) +
' (default: l2)')
parser.add_argument('-b',
'--batch-size',
default=1,
type=int,
help='mini-batch size (default: 1)')
parser.add_argument('--lr',
'--learning-rate',
default=1e-5,
type=float,
metavar='LR',
help='initial learning rate (default 1e-5)')
parser.add_argument('--weight-decay',
'--wd',
default=0,
type=float,
metavar='W',
help='weight decay (default: 0)')
parser.add_argument('--print-freq',
'-p',
default=10,
type=int,
metavar='N',
help='print frequency (default: 10)')
parser.add_argument('--resume',
default='',
type=str,
metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--data-folder',
default='../data',
type=str,
metavar='PATH',
help='data folder (default: none)')
parser.add_argument('-i',
'--input',
type=str,
default='gd',
choices=input_options,
help='input: | '.join(input_options))
parser.add_argument('-l',
'--layers',
type=int,
default=34,
help='use 16 for sparse_conv; use 18 or 34 for resnet')
parser.add_argument('--pretrained',
action="store_true",
help='use ImageNet pre-trained weights')
parser.add_argument('--val',
type=str,
default="select",
choices=["select", "full"],
help='full or select validation set')
parser.add_argument('--jitter',
type=float,
default=0.1,
help='color jitter for images')
parser.add_argument(
'--rank-metric',
type=str,
default='rmse',
choices=[m for m in dir(Result()) if not m.startswith('_')],
help='metrics for which best result is sbatch_datacted')
parser.add_argument(
'-m',
'--train-mode',
type=str,
default="dense",
choices=["dense", "sparse", "photo", "sparse+photo", "dense+photo"],
help='dense | sparse | photo | sparse+photo | dense+photo')
parser.add_argument('-e', '--evaluate', default='', type=str, metavar='PATH')
parser.add_argument('--cpu', action="store_true", help='run on cpu')
args = parser.parse_args()
args.use_pose = ("photo" in args.train_mode)
# args.pretrained = not args.no_pretrained
args.result = os.path.join('..', 'results')
args.use_rgb = ('rgb' in args.input) or args.use_pose
args.use_d = 'd' in args.input
args.use_g = 'g' in args.input
if args.use_pose:
args.w1, args.w2 = 0.1, 0.1
else:
args.w1, args.w2 = 0, 0
print(args)
cuda = torch.cuda.is_available() and not args.cpu
if cuda:
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
device = torch.device("cuda")
else:
device = torch.device("cpu")
print("=> using '{}' for computation.".format(device))
# define loss functions
depth_criterion = criteria.MaskedMSELoss() if (
args.criterion == 'l2') else criteria.MaskedL1Loss()
photometric_criterion = criteria.PhotometricLoss()
smoothness_criterion = criteria.SmoothnessLoss()
if args.use_pose:
# hard-coded KITTI camera intrinsics
K = load_calib()
fu, fv = float(K[0, 0]), float(K[1, 1])
cu, cv = float(K[0, 2]), float(K[1, 2])
kitti_intrinsics = Intrinsics(owidth, oheight, fu, fv, cu, cv)
if cuda:
kitti_intrinsics = kitti_intrinsics.cuda()
def iterate(mode, args, loader, model, optimizer, logger, epoch):
block_average_meter = AverageMeter()
average_meter = AverageMeter()
meters = [block_average_meter, average_meter]
# switch to appropriate mode
assert mode in ["train", "val", "eval", "test_prediction", "test_completion"], \
"unsupported mode: {}".format(mode)
if mode == 'train':
model.train()
lr = helper.adjust_learning_rate(args.lr, optimizer, epoch)
else:
model.eval()
lr = 0
for i, batch_data in enumerate(loader):
start = time.time()
batch_data = {
key: val.to(device)
for key, val in batch_data.items() if val is not None
}
gt = batch_data[
'gt'] if mode != 'test_prediction' and mode != 'test_completion' else None
data_time = time.time() - start
start = time.time()
pred = model(batch_data)
depth_loss, photometric_loss, smooth_loss, mask = 0, 0, 0, None
if mode == 'train':
# Loss 1: the direct depth supervision from ground truth label
# mask=1 indicates that a pixel does not ground truth labels
if 'sparse' in args.train_mode:
depth_loss = depth_criterion(pred, batch_data['d'])
mask = (batch_data['d'] < 1e-3).float()
elif 'dense' in args.train_mode:
depth_loss = depth_criterion(pred, gt)
mask = (gt < 1e-3).float()
# Loss 2: the self-supervised photometric loss
if args.use_pose:
# create multi-scale pyramids
pred_array = helper.multiscale(pred)
rgb_curr_array = helper.multiscale(batch_data['rgb'])
rgb_near_array = helper.multiscale(batch_data['rgb_near'])
if mask is not None:
mask_array = helper.multiscale(mask)
num_scales = len(pred_array)
# compute photometric loss at multiple scales
for scale in range(len(pred_array)):
pred_ = pred_array[scale]
rgb_curr_ = rgb_curr_array[scale]
rgb_near_ = rgb_near_array[scale]
mask_ = None
if mask is not None:
mask_ = mask_array[scale]
# compute the corresponding intrinsic parameters
height_, width_ = pred_.size(2), pred_.size(3)
intrinsics_ = kitti_intrinsics.scale(height_, width_)
# inverse warp from a nearby frame to the current frame
warped_ = homography_from(rgb_near_, pred_,
batch_data['r_mat'],
batch_data['t_vec'], intrinsics_)
photometric_loss += photometric_criterion(
rgb_curr_, warped_, mask_) * (2**(scale - num_scales))
# Loss 3: the depth smoothness loss
smooth_loss = smoothness_criterion(pred) if args.w2 > 0 else 0
# backprop
loss = depth_loss + args.w1 * photometric_loss + args.w2 * smooth_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
gpu_time = time.time() - start
# measure accuracy and record loss
with torch.no_grad():
mini_batch_size = next(iter(batch_data.values())).size(0)
result = Result()
if mode != 'test_prediction' and mode != 'test_completion':
result.evaluate(pred.data, gt.data, photometric_loss)
[
m.update(result, gpu_time, data_time, mini_batch_size)
for m in meters
]
logger.conditional_print(mode, i, epoch, lr, len(loader),
block_average_meter, average_meter)
logger.conditional_save_img_comparison(mode, i, batch_data, pred,
epoch)
logger.conditional_save_pred(mode, i, pred, epoch)
avg = logger.conditional_save_info(mode, average_meter, epoch)
is_best = logger.rank_conditional_save_best(mode, avg, epoch)
if is_best and not (mode == "train"):
logger.save_img_comparison_as_best(mode, epoch)
logger.conditional_summarize(mode, avg, is_best)
return avg, is_best
def main():
global args
checkpoint = None
is_eval = False
if args.evaluate:
args_new = args
if os.path.isfile(args.evaluate):
print("=> loading checkpoint '{}' ... ".format(args.evaluate),
end='')
checkpoint = torch.load(args.evaluate, map_location=device)
args = checkpoint['args']
args.data_folder = args_new.data_folder
args.val = args_new.val
is_eval = True
print("Completed.")
else:
print("No model found at '{}'".format(args.evaluate))
return
elif args.resume: # optionally resume from a checkpoint
args_new = args
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}' ... ".format(args.resume),
end='')
checkpoint = torch.load(args.resume, map_location=device)
args.start_epoch = checkpoint['epoch'] + 1
args.data_folder = args_new.data_folder
args.val = args_new.val
print("Completed. Resuming from epoch {}.".format(
checkpoint['epoch']))
else:
print("No checkpoint found at '{}'".format(args.resume))
return
print("=> creating model and optimizer ... ", end='')
model = DepthCompletionNet(args).to(device)
model_named_params = [
p for _, p in model.named_parameters() if p.requires_grad
]
optimizer = torch.optim.Adam(model_named_params,
lr=args.lr,
weight_decay=args.weight_decay)
print("completed.")
if checkpoint is not None:
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> checkpoint state loaded.")
model = torch.nn.DataParallel(model)
# Data loading code
print("=> creating data loaders ... ")
if not is_eval:
train_dataset = KittiDepth('train', args)
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True,
sampler=None)
print("\t==> train_loader size:{}".format(len(train_loader)))
val_dataset = KittiDepth('val', args)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=1,
shuffle=False,
num_workers=2,
pin_memory=True) # set batch size to be 1 for validation
print("\t==> val_loader size:{}".format(len(val_loader)))
# create backups and results folder
logger = helper.logger(args)
if checkpoint is not None:
logger.best_result = checkpoint['best_result']
print("=> logger created.")
if is_eval:
print("=> starting model evaluation ...")
result, is_best = iterate("val", args, val_loader, model, None, logger,
checkpoint['epoch'])
return
# main loop
print("=> starting main loop ...")
for epoch in range(args.start_epoch, args.epochs):
print("=> starting training epoch {} ..".format(epoch))
iterate("train", args, train_loader, model, optimizer, logger,
epoch) # train for one epoch
result, is_best = iterate("val", args, val_loader, model, None, logger,
epoch) # evaluate on validation set
helper.save_checkpoint({ # save checkpoint
'epoch': epoch,
'model': model.module.state_dict(),
'best_result': logger.best_result,
'optimizer' : optimizer.state_dict(),
'args' : args,
}, is_best, epoch, logger.output_directory)
if __name__ == '__main__':
main()