-
Notifications
You must be signed in to change notification settings - Fork 0
/
robots.py
403 lines (334 loc) · 17.5 KB
/
robots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import numpy as np
import cv2
import tensorflow as tf
from tensorflow.keras.layers import LSTM, Dense, Input, TimeDistributed, Attention, Concatenate, Flatten, Reshape, RepeatVector, MultiHeadAttention, LayerNormalization, Dropout
from tensorflow.keras.models import Model
import networkx as nx
import torch
import torch_geometric
from torch_geometric.data import Data
import rclpy
from rclpy.node import Node
from sensor_msgs.msg import LaserScan
import google.cloud.pubsub_v1 as pubsub
import json
from google.cloud import aiplatform
from datetime import datetime, timedelta
from google.cloud import storage
# Object Detection Model (e.g., YOLO)
object_detector = cv2.dnn.readNetFromDarknet("yolov3.cfg", "yolov3.weights")
# Kalman Filter
class KalmanTracker:
def __init__(self, initial_state):
self.filter = cv2.KalmanFilter(4, 2)
self.filter.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32)
self.filter.transitionMatrix = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
self.filter.processNoiseCov = np.eye(4, dtype=np.float32) * 0.03
self.filter.measurementNoiseCov = np.eye(2, dtype=np.float32) * 0.1
self.filter.statePost = initial_state
def predict(self):
predicted_state = self.filter.predict()
return predicted_state
def update(self, measurement):
self.filter.correct(measurement)
return self.filter.statePost
# Transformer Block
class TransformerBlock(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads, dff, rate=0.1):
super(TransformerBlock, self).__init__()
self.mha = MultiHeadAttention(num_heads=num_heads, key_dim=d_model)
self.layernorm1 = LayerNormalization(epsilon=1e-6)
self.ffn = tf.keras.Sequential(
[Dense(dff, activation='relu'), Dense(d_model)]
)
self.layernorm2 = LayerNormalization(epsilon=1e-6)
self.dropout1 = tf.keras.layers.Dropout(rate)
self.dropout2 = tf.keras.layers.Dropout(rate)
def call(self, x, training):
attn_output, attn_weights = self.mha(x, x, x)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(x + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
out2 = self.layernorm2(out1 + ffn_output)
return out2
# Neural Network for Learning Object Behavior (Transformer)
class ObjectBehaviorLearner:
def __init__(self, prediction_horizon=10, state_dimension=4, d_model=128, num_heads=8, dff=512, num_layers=2):
self.prediction_horizon = prediction_horizon
self.state_dimension = state_dimension
self.object_graph = nx.Graph() # Initialize an empty graph
# Define the Transformer architecture
input_layer = Input(shape=(None, self.state_dimension)) # Input shape: (time steps, state dimensions)
# Embedding Layer
x = Dense(d_model)(input_layer)
# Transformer Blocks
for _ in range(num_layers):
x = TransformerBlock(d_model, num_heads, dff)(x)
# Output Layer
output_layer = TimeDistributed(Dense(self.state_dimension))(x)
# Create the model
self.model = Model(inputs=input_layer, outputs=output_layer)
self.model.compile(optimizer='adam', loss='mse')
def train(self, states, future_states):
# Train the Transformer on object states and future predictions
self.model.fit(states, future_states, epochs=10, batch_size=32, validation_split=0.2)
def predict(self, states):
"""Predicts future states based on the learned behavior."""
predictions = self.model.predict(states)
return predictions
def update_graph(self, object_id, state, predicted_state, alpha=0.5):
"""Updates the object graph with new information."""
now = datetime.utcnow() # Get current time
if object_id not in self.object_graph.nodes:
self.object_graph.add_node(object_id,
state=state, # Add the object's state
label=None,
description=None,
functionality=None,
affordances=None,
gemini_confidence=None,
explored=False,
timestamp=now.isoformat())
else:
self.object_graph.nodes[object_id]['state'] = state
self.object_graph.nodes[object_id]['explored'] = True
self.object_graph.nodes[object_id]['timestamp'] = now.isoformat() # Update timestamp
# Calculate velocity difference
velocity_diff = predicted_state[2:] - state[2:]
# Add an edge with velocity-based weight
self.object_graph.add_edge(
object_id, object_id,
weight=np.linalg.norm(state - predicted_state) + alpha * np.linalg.norm(velocity_diff)
)
def get_graph_information(self):
"""Retrieves information about the learned object graph."""
# You can use NetworkX functions to access graph information
# e.g., self.object_graph.degree(object_id) for the degree of a node
# self.object_graph.edges(object_id) for edges connected to a node
pass
def get_unexplored_objects(self):
"""Returns a list of unexplored object IDs."""
return [node for node, data in self.object_graph.nodes(data=True) if not data.get('explored', False)]
def publish_object_info(self, node_id):
"""Publishes information about unexplored objects."""
unexplored_objects = self.get_unexplored_objects()
if unexplored_objects:
message = {
'node_id': node_id,
'unexplored_objects': unexplored_objects
}
data = json.dumps(message).encode('utf-8')
future = publisher.publish(topic_path, data)
print(f"Published object info message ID: {future.result()}")
def request_object_info(self, node_id):
"""Publishes a request for other nodes to share object info."""
message = {
'node_id': node_id,
'requesting_object_info': True
}
data = json.dumps(message).encode('utf-8')
future = publisher.publish(topic_path, data)
print(f"Published object info request message ID: {future.result()}")
# Graph Neural Network Model
class ObjectBehaviorGNN(torch.nn.Module):
def __init__(self, hidden_channels, state_dimension=4):
super().__init__()
self.state_dimension = state_dimension
self.conv1 = torch_geometric.nn.GCNConv(self.state_dimension, hidden_channels)
self.conv2 = torch_geometric.nn.GCNConv(hidden_channels, self.state_dimension)
def forward(self, x, edge_index):
x = self.conv1(x, edge_index)
x = torch.relu(x)
x = self.conv2(x, edge_index)
return x
# Neural Network for Combining Predictions
class PredictionCombiner(tf.keras.Model):
def __init__(self, input_dim, output_dim, prediction_horizon=10, use_confidence_weighting=True, dropout_rate=0.2):
super(PredictionCombiner, self).__init__()
self.use_confidence_weighting = use_confidence_weighting
self.dropout_rate = dropout_rate
self.prediction_horizon = prediction_horizon
self.dense1 = Dense(128, activation='relu')
self.dense2 = Dense(64, activation='relu')
self.dense3 = Dense(output_dim * self.prediction_horizon) # Output waypoints for the prediction horizon
self.layer_norm = LayerNormalization(epsilon=1e-6)
self.dropout = Dropout(self.dropout_rate)
def call(self, inputs):
# Inputs: [rnn_predictions, gnn_predictions, rnn_confidences, gnn_confidences, ... contextual information]
rnn_predictions, gnn_predictions, rnn_confidences, gnn_confidences, environment_info, robot_state, obstacles = inputs
# Flatten only if necessary
if len(rnn_predictions.shape) > 2:
rnn_predictions = Flatten()(rnn_predictions)
if len(gnn_predictions.shape) > 2:
gnn_predictions = Flatten()(gnn_predictions)
if len(rnn_confidences.shape) > 1:
rnn_confidences = Flatten()(rnn_confidences)
if len(gnn_confidences.shape) > 1:
gnn_confidences = Flatten()(gnn_confidences)
if len(environment_info.shape) > 2:
environment_info = Flatten()(environment_info)
if len(robot_state.shape) > 2:
robot_state = Flatten()(robot_state)
if len(obstacles.shape) > 1:
obstacles = Flatten()(obstacles)
# Confidence Weighting
if self.use_confidence_weighting:
rnn_predictions = rnn_predictions * rnn_confidences[:, tf.newaxis]
gnn_predictions = gnn_predictions * gnn_confidences[:, tf.newaxis]
# Concatenate and Normalize
combined_input = Concatenate()([rnn_predictions, gnn_predictions, environment_info, robot_state, obstacles])
combined_input = self.layer_norm(combined_input)
combined_input = self.dropout(combined_input, training=True)
# Dense Layers
combined_input = self.dense1(combined_input)
combined_input = self.dense2(combined_input)
waypoints = self.dense3(combined_input)
waypoints = Reshape((self.prediction_horizon, output_dim))(waypoints) # Reshape into waypoints
return waypoints
# Global variable to store environment information
environment_info = None
class EnvironmentInfoNode(Node):
def __init__(self):
super().__init__('environment_info_node')
self.create_subscription(LaserScan, '/scan', self.lidar_callback, 10)
def lidar_callback(self, msg):
global environment_info # Access the global variable
# Process the Lidar scan data
ranges = np.array(msg.ranges)
# ... (Implement your logic to detect obstacles and extract information)
# Example: Return distances to obstacles as environment information
environment_info = ranges # Replace with your actual environment information
# Pub/Sub setup
publisher = pubsub.PublisherClient()
subscriber = pubsub.SubscriberClient()
project_id = 'your-gcp-project-id'
topic_id = 'object_exploration' # Use a descriptive topic ID
subscription_id = 'robot_subscription'
topic_path = publisher.topic_path(project_id, topic_id)
subscription_path = subscriber.subscription_path(project_id, subscription_id)
# Create the topic and subscription (if they don't exist)
try:
publisher.create_topic(name=topic_path)
except:
pass
try:
subscriber.create_subscription(name=subscription_path, topic=topic_path)
except:
pass
# Function to Save Graph to Cloud Storage
def save_graph_to_cloud_storage(graph, bucket_name, blob_name):
"""Saves the object graph to Google Cloud Storage."""
storage_client = storage.Client()
bucket = storage_client.bucket(bucket_name)
blob = bucket.blob(blob_name)
graph_data = nx.node_link_data(graph)
blob.upload_from_string(json.dumps(graph_data))
print(f"Graph data saved to gs://{bucket_name}/{blob_name}")
# Robot Loop
def robot_loop():
learner = ObjectBehaviorLearner(state_dimension=4) # Initialize the learner with a graph
gnn_model = ObjectBehaviorGNN(hidden_channels=64, state_dimension=4)
optimizer_gnn = torch.optim.Adam(gnn_model.parameters())
combiner = PredictionCombiner(input_dim=state_dimension * 2 + 3 + 3, output_dim=state_dimension, prediction_horizon=10) # Input is RNN + GNN predictions + environment_info + robot_state
optimizer_combiner = tf.keras.optimizers.Adam()
# Pre-train the Combiner (if you have a dataset)
pre_training_data_available = True # Set to True if you have pre-training data
if pre_training_data_available:
rnn_predictions_train, gnn_predictions_train, rnn_confidences_train, gnn_confidences_train, environment_info_train, robot_state_train, actual_states_train = load_pre_training_data() # Implement this function
combiner.compile(loss=custom_loss, optimizer=optimizer_combiner)
combiner.fit(
[rnn_predictions_train, gnn_predictions_train, rnn_confidences_train, gnn_confidences_train, environment_info_train, robot_state_train],
actual_states_train,
epochs=10, # Adjust as needed
verbose=0
)
# Initialize the ROS node
rclpy.init(args=None)
environment_info_node = EnvironmentInfoNode()
robot_id = 'robot_1' # Assign a unique ID to this robot
frame_count = 0
while True:
# Capture a frame from the robot's camera
frame = capture.read()
frame_count += 1
# Object Detection
detections = object_detector.detect(frame)
# Kalman Filtering
trackers = {}
for detection in detections:
object_id = detection.id
# 1. Check for Unexplored or Low-Confidence Objects:
if object_is_unexplored(object_id) or object_confidence_is_low(object_id):
# Capture image of the object
image = capture_object_image(object_id)
# Query Gemini for object identification and description
gemini_response = query_gemini(image, "What is this object? Describe it.")
# 2. Update Object Graph with Gemini Response:
learner.update_object_graph(object_id, gemini_response)
# 3. Decide Exploration Based on Gemini Response:
if should_explore_object(object_id, gemini_response):
explore_object(object_id)
# 4. Kalman Filtering (for ALL objects, even if explored):
if object_id not in trackers:
trackers[object_id] = KalmanTracker(detection.state)
predicted_state = trackers[object_id].predict()
updated_state = trackers[object_id].update(detection.state)
# 5. Update the graph with alpha (for ALL objects):
learner.update_graph(object_id, updated_state, predicted_state, alpha=0.5)
# Create Graph for GNN
graph = Data(
x=torch.tensor([tracker.state for tracker in trackers.values()]).float(), # State features
edge_index=torch.tensor(list(learner.object_graph.edges())).T.long() # Convert to PyTorch tensor and ensure correct shape
)
# Train GNN
if len(trackers) > 1: # Only train if there are multiple objects
gnn_model.train()
optimizer_gnn.zero_grad()
future_predictions_gnn = gnn_model(graph.x, graph.edge_index)
loss_gnn = torch.mean((future_predictions_gnn - graph.x)**2) # Example MSE loss
loss_gnn.backward()
optimizer_gnn.step()
# Prediction using GNN
gnn_model.eval()
future_predictions_gnn = gnn_model(graph.x, graph.edge_index)
# Neural Network Learning (RNN)
rnn_predictions = []
for object_id, tracker in trackers.items():
past_states = [tracker.state for _ in range(learner.prediction_horizon)] # Collect the last 'N' states
future_predictions_rnn = learner.predict(np.array([past_states]))
rnn_predictions.append(future_predictions_rnn)
rnn_predictions = np.array(rnn_predictions)
# Combine predictions from RNN and GNN
if len(rnn_predictions) > 0 and len(future_predictions_gnn) > 0:
# Get confidence scores (example)
rnn_confidences = np.mean(np.square(learner.model.predict(np.array([past_states])) - np.array([past_states])), axis=1) # Example: Mean squared error of predictions vs. actual states
gnn_confidences = torch.mean(torch.square(gnn_model(graph.x, graph.edge_index) - graph.x), axis=1).numpy() # Example: Mean squared error of GNN predictions vs. actual states
# Get contextual information (example)
environment_info = get_environment_info() # Implement this function to get environment data
robot_state = get_robot_state() # Implement this function to get robot state data
# Process Lidar data to identify obstacles (example)
obstacles = process_lidar_data(environment_info)
# Get waypoints from the combiner
waypoints = combiner([rnn_predictions, future_predictions_gnn, rnn_confidences, gnn_confidences, environment_info, robot_state, obstacles])
# Smooth and refine the waypoints (optional)
smoothed_path = smooth_path(waypoints)
# Execute the path
execute_path(smoothed_path)
# Periodically Save Graph Data to Cloud Storage
if frame_count % 100 == 0: # Save every 100 frames (adjust as needed)
save_graph_to_cloud_storage(learner.object_graph, 'your-bucket-name', 'graph_data.json')
# ... (Visualization, etc.)
# Placeholder functions for environment and robot state
def get_environment_info():
# Implement logic to capture environment information
# Example: Read sensor data, process camera images, etc.
return np.array([0.0, 0.0, 0.0]) # Replace with actual environment data
def get_robot_state():
# Implement logic to get robot state information
# Example: Read robot position, orientation, velocity, etc.
return np.array([0.0, 0.0, 0.0]) # Replace with actual robot state data
# ... (Other placeholder functions for object detection, Gemini, exploration, etc.)
# Initialize and Run the Robot Loop
capture = cv2.VideoCapture(0) # Open camera (or your video source)
robot_loop()