-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainSpeakerNet.py
395 lines (291 loc) · 15.8 KB
/
trainSpeakerNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
#!/usr/bin/python
#-*- coding: utf-8 -*-
import sys, time, os, argparse, socket
import yaml
import numpy
import pdb
import torch
import glob
import zipfile
import warnings
import datetime
from tuneThreshold import *
from SpeakerNet import *
from DatasetLoader import *
import torch.distributed as dist
import torch.multiprocessing as mp
from scipy.stats import norm
from sklearn.mixture import GaussianMixture
## ===== ===== ===== ===== ===== ===== ===== =====
## Parse arguments
## ===== ===== ===== ===== ===== ===== ===== =====
# os.environ['CUDA_VISIBLE_DEVICES']='0,1,2,3'
parser = argparse.ArgumentParser(description = "SpeakerNet");
parser.add_argument('--config', type=str, default=None, help='Config YAML file');
## Data loader
parser.add_argument('--max_frames', type=int, default=200, help='Input length to the network for training');
parser.add_argument('--eval_frames', type=int, default=300, help='Input length to the network for testing; 0 uses the whole files');
parser.add_argument('--batch_size', type=int, default=400, help='Batch size, number of speakers per batch');
parser.add_argument('--max_seg_per_spk', type=int, default=500, help='Maximum number of utterances per speaker per epoch');
parser.add_argument('--nDataLoaderThread', type=int, default=10, help='Number of loader threads');
parser.add_argument('--augment', type=bool, default=True, help='Augment input')
parser.add_argument('--seed', type=int, default=20211202, help='Seed for the random number generator');
## Training details
parser.add_argument('--test_interval', type=int, default=1, help='Test and save every [test_interval] epochs');
parser.add_argument('--max_epoch', type=int, default=50, help='Maximum number of epochs');
parser.add_argument('--trainfunc', type=str, default="aamsoftmax", help='Loss function');
## Optimizer
parser.add_argument('--optimizer', type=str, default="adamw", help='sgd or adam');
parser.add_argument('--scheduler', type=str, default="steplr", help='Learning rate scheduler');
parser.add_argument('--lr', type=float, default=0.001, help='Learning rate');
parser.add_argument("--lr_decay", type=float, default=0.9, help='Learning rate decay every [test_interval] epochs');
## Pre-trained Transformer Model
parser.add_argument('--pretrained_model_path', type=str, default="None", help='Absolute path to the pre-trained model');
parser.add_argument('--weight_finetuning_reg', type=float, default=0.001, help='L2 regularization towards the initial pre-trained model');
parser.add_argument('--LLRD_factor', type=float, default=1.0, help='Layer-wise Learning Rate Decay (LLRD) factor');
parser.add_argument('--LR_Transformer', type=float, default=2e-5, help='Learning rate of pre-trained model');
parser.add_argument('--LR_MHFA', type=float, default=5e-3, help='Learning rate of back-end attentive pooling model');
## Loss functions
parser.add_argument("--hard_prob", type=float, default=0.5, help='Hard negative mining probability, otherwise random, only for some loss functions');
parser.add_argument("--hard_rank", type=int, default=10, help='Hard negative mining rank in the batch, only for some loss functions');
parser.add_argument('--margin', type=float, default=0.2, help='Loss margin, only for some loss functions');
parser.add_argument('--scale', type=float, default=30, help='Loss scale, only for some loss functions');
parser.add_argument('--nPerSpeaker', type=int, default=1, help='Number of utterances per speaker per batch, only for metric learning based losses');
parser.add_argument('--nClasses', type=int, default=5994, help='Number of speakers in the softmax layer, only for softmax-based losses');
## Evaluation parameters
parser.add_argument('--dcf_p_target', type=float, default=0.05, help='A priori probability of the specified target speaker');
parser.add_argument('--dcf_c_miss', type=float, default=1, help='Cost of a missed detection');
parser.add_argument('--dcf_c_fa', type=float, default=1, help='Cost of a spurious detection');
## Load and save
parser.add_argument('--initial_model', type=str, default="", help='Initial model weights');
parser.add_argument('--save_path', type=str, default="exps/exp1", help='Path for model and logs');
## Training and test data
parser.add_argument('--train_list', type=str, default="data/train_list.txt", help='Train list');
parser.add_argument('--test_list', type=str, default="data/test_list.txt", help='Evaluation list');
parser.add_argument('--train_path', type=str, default="data/voxceleb2", help='Absolute path to the train set');
parser.add_argument('--test_path', type=str, default="data/voxceleb1", help='Absolute path to the test set');
parser.add_argument('--musan_path', type=str, default="data/musan_split", help='Absolute path to the test set');
parser.add_argument('--rir_path', type=str, default="data/simulated_rirs", help='Absolute path to the test set');
## Model definition
parser.add_argument('--n_mels', type=int, default=80, help='Number of mel filterbanks');
parser.add_argument('--log_input', type=bool, default=False, help='Log input features')
parser.add_argument('--model', type=str, default="", help='Name of model definition');
parser.add_argument('--encoder_type', type=str, default="SAP", help='Type of encoder');
parser.add_argument('--nOut', type=int, default=192, help='Embedding size in the last FC layer');
## For test only
parser.add_argument('--eval', dest='eval', action='store_true', help='Eval only')
## Distributed and mixed precision training
parser.add_argument('--port', type=str, default="7888", help='Port for distributed training, input as text');
parser.add_argument('--distributed', dest='distributed', action='store_true', help='Enable distributed training')
parser.add_argument('--mixedprec', dest='mixedprec', action='store_true', help='Enable mixed precision training')
args = parser.parse_args();
## Parse YAML
def find_option_type(key, parser):
for opt in parser._get_optional_actions():
if ('--' + key) in opt.option_strings:
return opt.type
raise ValueError
if args.config is not None:
with open(args.config, "r") as f:
yml_config = yaml.load(f, Loader=yaml.FullLoader)
for k, v in yml_config.items():
if k in args.__dict__:
typ = find_option_type(k, parser)
args.__dict__[k] = typ(v)
else:
sys.stderr.write("Ignored unknown parameter {} in yaml.\n".format(k))
## Try to import NSML
try:
import nsml
from nsml import HAS_DATASET, DATASET_PATH, PARALLEL_WORLD, PARALLEL_PORTS, MY_RANK
from nsml import NSML_NFS_OUTPUT, SESSION_NAME
except:
pass;
warnings.simplefilter("ignore")
## ===== ===== ===== ===== ===== ===== ===== =====
## Trainer script
## ===== ===== ===== ===== ===== ===== ===== =====
def LGL_threshold_update_gmm(loss_vals_path):
with open(loss_vals_path, 'r') as f:
lines = [line.strip().split() for line in f.readlines()]
# losses = [float(line[0]) for line in lines]
losses = []
errs = 0
for line in lines:
try:
losses.append(float(line[0]))
except ValueError:
errs += 1
pass
if errs > 0:
print('Could not read %d lines' % errs)
log_losses = np.log(losses)
gmm = GaussianMixture(n_components=2, random_state=0, covariance_type='full', tol=0.00001, max_iter=1000)
gmm.fit(log_losses.reshape(-1, 1))
mean1 = gmm.means_[0, 0]
covar1 = gmm.covariances_[0, 0]
weight1 = gmm.weights_[0]
x = np.linspace(min(log_losses), max(log_losses), 1000)
g1 = weight1 * norm.pdf(x, mean1, np.sqrt(covar1))
mean2 = gmm.means_[1, 0]
covar2 = gmm.covariances_[1, 0]
weight2 = gmm.weights_[1]
g2 = weight2 * norm.pdf(x, mean2, np.sqrt(covar2))
intersection = np.argwhere(np.diff(np.sign(g1 - g2))).flatten()
max1 = x[np.argmax(g1)]
max2 = x[np.argmax(g2)]
good_intersection = x[intersection][(x[intersection] > min(max1, max2)) & (x[intersection] < max(max1, max2))]
assert len(good_intersection) == 1, 'Wrong number of intersections'
good_intersection = good_intersection[0]
return good_intersection
import idr_torch
def main_worker(gpu, ngpus_per_node, args):
args.gpu = gpu
args.gpu = idr_torch.rank
ngpus_per_node = idr_torch.size
## Load models
s = SpeakerNet(**vars(args));
if args.distributed:
# os.environ['MASTER_ADDR']='localhost'
# os.environ['MASTER_PORT']=args.port
# dist.init_process_group(backend='nccl', world_size=ngpus_per_node, rank=args.gpu, init_method='tcp://localhost:12345')
dist.init_process_group(backend='nccl', world_size=ngpus_per_node, rank=args.gpu)
torch.cuda.set_device(args.gpu)
s.cuda(args.gpu)
s = torch.nn.parallel.DistributedDataParallel(s, device_ids=[args.gpu])#, find_unused_parameters=True)
print('Loaded the model on GPU {:d}'.format(args.gpu))
else:
s = WrappedModel(s).cuda(args.gpu)
it = 1
eers = [100];
if args.gpu == 0:
## Write args to scorefile
scorefile = open(args.result_save_path+"/scores.txt", "a+");
## Initialise trainer and data loader
train_dataset = train_dataset_loader(**vars(args))
train_sampler = train_dataset_sampler(train_dataset, **vars(args))
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
num_workers=args.nDataLoaderThread,
sampler=train_sampler,
pin_memory=True,
worker_init_fn=worker_init_fn,
drop_last=True,
)
# trainLoader = get_data_loader(args.train_list, **vars(args));
trainer = ModelTrainer(s, **vars(args))
## Load model weights
modelfiles = glob.glob('%s/model0*.model'%args.model_save_path)
modelfiles.sort()
if(args.initial_model != ""):
trainer.loadParameters(args.initial_model);
print("Model {} loaded!".format(args.initial_model));
elif len(modelfiles) >= 1:
print("Model {} loaded from previous state!".format(modelfiles[-1]));
trainer.loadParameters(modelfiles[-1]);
it = int(os.path.splitext(os.path.basename(modelfiles[-1]))[0][5:]) + 1
for ii in range(1,it):
trainer.__scheduler__.step()
pytorch_total_params = sum(p.numel() for p in s.module.__S__.parameters())
print('Total parameters: ',pytorch_total_params)
## Evaluation code - must run on single GPU
if args.eval == True:
print('Test list',args.test_list)
sc, lab, _, sc1,sc2 = trainer.evaluateFromList(**vars(args))
if args.gpu == 0:
result = tuneThresholdfromScore(sc, lab, [1, 0.1]);
result_s1 = tuneThresholdfromScore(sc1, lab, [1, 0.1]);
result_s2 = tuneThresholdfromScore(sc2, lab, [1, 0.1]);
fnrs, fprs, thresholds = ComputeErrorRates(sc, lab)
mindcf, threshold = ComputeMinDcf(fnrs, fprs, thresholds, args.dcf_p_target, args.dcf_c_miss, args.dcf_c_fa)
print('\n',time.strftime("%Y-%m-%d %H:%M:%S"), "VEER {:2.4f}".format(result[1]), "VEER_s1 {:2.4f}".format(result_s1[1]),"VEER_s2 {:2.4f}".format(result_s2[1]),"MinDCF {:2.5f}".format(mindcf));
if ("nsml" in sys.modules) and args.gpu == 0:
training_report = {};
training_report["summary"] = True;
training_report["epoch"] = it;
training_report["step"] = it;
training_report["val_eer"] = result[1];
training_report["val_dcf"] = mindcf;
nsml.report(**training_report);
return
## Save training code and params
if args.gpu == 0:
pyfiles = glob.glob('./*.py')
strtime = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
zipf = zipfile.ZipFile(args.result_save_path+ '/run%s.zip'%strtime, 'w', zipfile.ZIP_DEFLATED)
for file in pyfiles:
zipf.write(file)
zipf.close()
with open(args.result_save_path + '/run%s.cmd'%strtime, 'w') as f:
f.write('%s'%args)
## Core training script
for it in range(it,args.max_epoch+1):
train_sampler.set_epoch(it)
clr = [x['lr'] for x in trainer.__optimizer__.param_groups]
loss_vals_dir = 'exp/' + args.save_path.split('/')[-1] + '/loss_vals'
os.makedirs(loss_vals_dir, exist_ok=True)
loss_vals_path = os.path.join(loss_vals_dir, 'epoch_%d.txt' % it)
if it >= 5:
prev_loss_vals_path = os.path.join(loss_vals_dir, 'epoch_%d.txt' % (it - 1))
LGL_threshold = LGL_threshold_update_gmm(prev_loss_vals_path)
# LGL_threshold = 1
if args.gpu == 0:
if LGL_threshold is not None:
print('Updated LGL threshold to %f' % LGL_threshold)
else:
print('Wrong number of intersections, keeping LGL threshold at %f' % LGL_threshold)
trainer.update_lgl_threshold(LGL_threshold)
loss, traineer = trainer.train_network(train_loader, loss_vals_path, it, verbose=(args.gpu == 0))
if args.distributed:
dist.barrier()
with open(loss_vals_path, 'w') as final_file:
for r in range(dist.get_world_size()):
part_file_path = f"{loss_vals_path.split('.')[0]}_rank{r}.txt"
with open(part_file_path, 'r') as part_file:
final_file.write(part_file.read())
if args.gpu == 0:
print('\n',time.strftime("%Y-%m-%d %H:%M:%S"), "Epoch {:d}, TEER/TAcc {:2.2f}, TLOSS {:f}, LR {:f}".format(it, traineer.item(), loss.item(), max(clr)));
scorefile.write("Epoch {:d}, TEER/TAcc {:2.2f}, TLOSS {:f}, LR {:f} \n".format(it, traineer.item(), loss.item(), max(clr)));
if it % args.test_interval == 0:
# sc, lab, _, as1, as2 = trainer.evaluateFromList(**vars(args))
if args.gpu == 0:
trainer.saveParameters(args.model_save_path+"/model%09d.model"%it);
scorefile.flush()
if ("nsml" in sys.modules) and args.gpu == 0:
training_report = {};
training_report["summary"] = True;
training_report["epoch"] = it;
training_report["step"] = it;
training_report["train_loss"] = loss;
training_report["min_eer"] = min(eers);
nsml.report(**training_report);
if args.gpu == 0:
scorefile.close();
## ===== ===== ===== ===== ===== ===== ===== =====
## Main function
## ===== ===== ===== ===== ===== ===== ===== =====
def main():
# print(os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set'))
# os.environ['CUDA_VISIBLE_DEVICES'] = '1,2'
# print(os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set'))
if ("nsml" in sys.modules) and not args.eval:
args.save_path = os.path.join(args.save_path,SESSION_NAME.replace('/','_'))
args.model_save_path = args.save_path+"/model"
args.result_save_path = args.save_path+"/result"
args.feat_save_path = ""
os.makedirs(args.model_save_path, exist_ok=True)
os.makedirs(args.result_save_path, exist_ok=True)
n_gpus = torch.cuda.device_count()
print(n_gpus)
print('Python Version:', sys.version)
print('PyTorch Version:', torch.__version__)
print('Number of GPUs:', torch.cuda.device_count())
print('Save path:',args.save_path)
if args.distributed:
# mp.spawn(main_worker, nprocs=n_gpus, args=(n_gpus, args))
main_worker(None, None, args)
else:
main_worker(0, None, args)
if __name__ == '__main__':
main()