-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloadflow.py
41 lines (28 loc) · 1.19 KB
/
loadflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import pypsa
import numpy as np
from sklearn.preprocessing import MinMaxScaler
##### REFERENCE WEBSITE: https://pypsa.org/doc/quick_start.html #########
network=pypsa.Network()
for i in range(5):
network.add("Bus","mybus{}".format(i+1))
print network.buses
network.add("Line","myline1",bus0="bus1",bus1="bus2",r=0.02,x=0.06)
network.add("Line","myline2",bus0="bus1",bus1="bus3",r=0.08,x=0.24)
network.add("Line","myline3",bus0="bus2",bus1="bus3",r=0.06,x=0.25)
network.add("Line","myline4",bus0="bus2",bus1="bus4",r=0.06,x=0.18)
network.add("Line","myline5",bus0="bus2",bus1="bus5",r=0.04,x=0.12)
network.add("Line","myline6",bus0="bus3",bus1="bus4",r=0.01,x=0.03)
network.add("Line","myline7",bus0="bus4",bus1="bus5",r=0.08,x=0.24)
print network.lines
network.add("Generator","mygen",bus="bus2",p_set=#########)
print network.generators
print network.generators.p_set
network.add("Load","myload1",bus="mybus2",p_set=######)
print network.loads
print network.loads.p_set
#do a Newton Raphson power flow
network.pf()
#print the flow values for each line
print network.lines_t.p0
# run this over "hourly" iterations with the values from every bus
# compare with predicted model from the powerpredict.py program