-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfitting_functions.lyx
executable file
·933 lines (633 loc) · 15.6 KB
/
fitting_functions.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
#LyX 2.2 created this file. For more info see http://www.lyx.org/
\lyxformat 508
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
EE5011: Fitting of Functions
\end_layout
\begin_layout Author
Rohan Rao, EE14B118
\end_layout
\begin_layout Section
Programming Assignment
\end_layout
\begin_layout Subsection
The function is f(x) =
\begin_inset Formula $x*J_{1}(x)$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
import scipy.special.jn as jn
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
def f(x):
\end_layout
\begin_layout Plain Layout
return jn(1,x)
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The Chebyshev form of an interpolating polynomial (for x in range [-1,1])
is as follows:
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
p(x)=b_{0}T_{0}(x)+b_{1}T_{1}(x)+...+b_{N}T_{N}(x)
\]
\end_inset
\end_layout
\begin_layout Standard
Since we are given data for N points
\begin_inset Formula $(x_{i},y_{i})$
\end_inset
for i=0,1,2,...N, we need to determine the coefficients
\begin_inset Formula $b_{k}$
\end_inset
such that
\begin_inset Formula $p(x_{i})=y_{i}$
\end_inset
.
This can be written in the form of a linear system Tb=y.
If the data is not contained in the interval [-1,1], it needs to be transformed
accordingly.
The final function for fitting the polynomial is below.
This can also be obtained by using the inbuilt np.polynomial.chebyshev.chebfit
function in Numpy.
\end_layout
\begin_layout Standard
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
def chebfit(xdata,ydata,x):
\end_layout
\begin_layout Plain Layout
...: n=len(xdata)
\end_layout
\begin_layout Plain Layout
...: xmax=max(xdata)
\end_layout
\begin_layout Plain Layout
...: xmin=min(xdata)
\end_layout
\begin_layout Plain Layout
...: xdata=(2*xdata-xmax-xmin)/(xmax-xmin)
\end_layout
\begin_layout Plain Layout
...: T=np.zeros((n,n))
\end_layout
\begin_layout Plain Layout
...: T[:,0]=1
\end_layout
\begin_layout Plain Layout
...: T[:,1]=xdata
\end_layout
\begin_layout Plain Layout
...: for j in range(2,n):
\end_layout
\begin_layout Plain Layout
...: T[:,j]=2*xdata*T[:,j-1]-T[:,j-2]
\end_layout
\begin_layout Plain Layout
...: b=np.dot(np.linalg.inv(T),ydata)
\end_layout
\begin_layout Plain Layout
...: x=(2*x-xmax-xmin)/(xmax-xmin)
\end_layout
\begin_layout Plain Layout
...: y=np.zeros(len(x))
\end_layout
\begin_layout Plain Layout
...: for j in range(n):
\end_layout
\begin_layout Plain Layout
...: y=y+b[j]*cos((j-1)*arccos(x));
\end_layout
\begin_layout Plain Layout
...: return y,b
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The coefficients (semilog) plot obtained by running this on 50 points in
range (0,5) is as follows:
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename chebfitcoeffmag.png
\end_inset
\end_layout
\begin_layout Standard
Thus, the use of 15 coefficients is sufficient for obtaining an accuracy
of the order of 15 significant figures.
\end_layout
\begin_layout Standard
The Chebyshev fit can be generated using the following commands:
\end_layout
\begin_layout Standard
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
def chebpoly(n,x):
\end_layout
\begin_layout Plain Layout
...: if(n==0):
\end_layout
\begin_layout Plain Layout
...: return 1
\end_layout
\begin_layout Plain Layout
...: if(n==1):
\end_layout
\begin_layout Plain Layout
...: return x
\end_layout
\begin_layout Plain Layout
...: return 2*x*chebpoly(n-1,x)-chebpoly(n-2,x)
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
def chebapproxfn(coeff,x):
\end_layout
\begin_layout Plain Layout
...: n=len(coeff)
\end_layout
\begin_layout Plain Layout
...: s=0
\end_layout
\begin_layout Plain Layout
...: for i in range(n):
\end_layout
\begin_layout Plain Layout
...: s+=coeff[i]*chebpoly(i,x)
\end_layout
\begin_layout Plain Layout
...: return s
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The error obtained over the interval 0 < x < 5 is as follows:
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename err_cheb.png
\end_inset
\end_layout
\begin_layout Standard
Discontinuities in the above semilog graph are due to an error of exactly
0.
\end_layout
\begin_layout Standard
The error can be seen to be of the order of
\begin_inset Formula $10^{-14}$
\end_inset
to
\begin_inset Formula $10^{-15}$
\end_inset
, approximately.
\end_layout
\begin_layout Standard
Similarly, the chebder function from numpy.polynomial.chebyshev can be used
as follows:
\end_layout
\begin_layout Standard
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
dercoeff=np.polynomial.chebyshev.chebder(coeff)
\end_layout
\begin_layout Plain Layout
errd=chebapproxfn(dercoeff,xdata)-xdata*jn(0,xdata)
\end_layout
\begin_layout Plain Layout
semilogy(xdata,errd)
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The plot is as below:
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename err_cheb_der.png
\end_inset
\end_layout
\begin_layout Standard
The discontinuities are due to an error of exactly zero.
Once again, the error is at worst, of the order of
\begin_inset Formula $10^{-13}$
\end_inset
.
\end_layout
\begin_layout Standard
The difference of samples method, for a value of delta=0.01, gives the following
plot:
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename diffder_err.png
\end_inset
\end_layout
\begin_layout Standard
Changing delta to 1e-5 gives the following plot:
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename diffder_errdel5.png
\end_inset
\end_layout
\begin_layout Standard
This has an error of the order of
\begin_inset Formula $10^{-10}$
\end_inset
.
In general, using the difference of samples method when calculating the
derivative does not allow us to use such a small value of delta, and so
the error would be considerably more than obtained in the second graph.
Graph 1 is somewhat more reasonable, but the following shows the error
for delta=0.1, which is for 50 points being sampled.
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename diffder_errdel1.png
\end_inset
\end_layout
\begin_layout Standard
This error is of the order of 3 decimal places, and so is not very accurate,
relative to the Chebyshev derivative, which is significantly more accurate.
\end_layout
\begin_layout Subsection
The function is f(x) = sin(x).
\end_layout
\begin_layout Standard
Using the functions defined above, the following error plot is obtained
with 10 coefficients and 200 samples.
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename 200termsin.png
\end_inset
\end_layout
\begin_layout Standard
The error is not uniform, it is of the form of an FIR filter with regularly
spaced taps.
\end_layout
\begin_layout Subsection
Five functions
\end_layout
\begin_layout Subsubsection
Fitting the function f(x) using 200 points in the range [-1,1] and 15 coefficien
ts for the Chebyshev series gives the following plot:
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename fx_err.png
\end_inset
\end_layout
\begin_layout Standard
The maximum error over the interval is of the order of
\begin_inset Formula $10^{-15}.$
\end_inset
\end_layout
\begin_layout Subsubsection
Fitting the function u(x) using 200 points in the range [-1,1] and 30 coefficien
ts for the Chebyshev series:
\end_layout
\begin_layout Standard
The function
\begin_inset Formula $u(x)=e^{-|x|}$
\end_inset
is not easily approximated over the full interval by a single polynomial
set.
The use of 30 coefficients still gives an error of
\begin_inset Formula $\sim10^{-3}$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename ux_30.png
\end_inset
\end_layout
\begin_layout Standard
When considering the split intervals of [-1,0) and (0,1] we get a significantly
better result with just 15 coefficients for [-1,0):
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename ux_15_neg.png
\end_inset
\end_layout
\begin_layout Standard
The discontinuties are due to an error of exactly zero on a semilog plot.
\end_layout
\begin_layout Standard
Similarly, for positive values of x, the 15 coefficient plot is below:
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename ux_15_pos.png
\end_inset
\end_layout
\begin_layout Standard
This shows that splitting the function u(x) into two intervals and fitting
each separately correctly removes the kink in the function at x=0 and allows
it to be fitted properly.
\end_layout
\begin_layout Subsubsection
Fitting the function v(x) using 200 points in the range [-1,1] and 30 coefficien
ts for the Chebyshev series:
\end_layout
\begin_layout Standard
The function v(x) has a branch cut discontinuity at x=-1.1, which is outside
the range [-1,1] but still causes the number of coefficients required to
increase significantly.
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename vx_30.png
\end_inset
\end_layout
\begin_layout Standard
The plot above shows that using 30 coefficients gives an error of the order
of
\begin_inset Formula $10^{-8}.$
\end_inset
The use of 15 coefficients gives an error of the order
\begin_inset Formula $10^{-6}.$
\end_inset
\end_layout
\begin_layout Subsubsection
Fitting the function g(x) for different values of delta and 200 points in
range [-1,1]:
\end_layout
\begin_layout Standard
For delta=0.1, 200 points are insufficient for obtaining an error of being
0.1 even by taking upto 50 coefficients.
\end_layout
\begin_layout Standard
For delta=1, about 15 terms are required for an error of order
\begin_inset Formula $10^{-6}$
\end_inset
:
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename gx_del1.png
\end_inset
\end_layout
\begin_layout Standard
For delta=10, a significantly smaller number of terms (N=7) is required
for very high accuracy:
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename gx_del10.png
\end_inset
\end_layout
\begin_layout Standard
For delta=100, just 3 terms are necessary for such accuracy:
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename gx_del100.png
\end_inset
\end_layout
\begin_layout Standard
This shows that the smoother the function becomes over the interval, the
more easily it can be approximated by a Chebyshev fit.
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename g(x01).png
\end_inset
\end_layout
\begin_layout Standard
For delta=0.1
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename g(x1).png
\end_inset
\end_layout
\begin_layout Standard
For delta=1
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename g(x10).png
\end_inset
\end_layout
\begin_layout Standard
For delta=10
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename g(x100).png
\end_inset
\end_layout
\begin_layout Standard
For delta=100
\end_layout
\begin_layout Subsubsection
Fitting the function h(x) for different values of delta and 200 points in
range [-1,1]:
\end_layout
\begin_layout Standard
For delta=1, with 20 coefficients:
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename h(x1).png
\end_inset
\end_layout
\begin_layout Standard
For delta=10, with 15 coefficients:
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename h(x10).png
\end_inset
\end_layout
\begin_layout Standard
For delta=100, with 10 coefficients:
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename h(x1000.png
\end_inset
\end_layout
\begin_layout Standard
Plotting h(x) for different values of delta shows that small values of delta
force the function to have sharp kinks at the edges of the interval, thus
requiring significantly more coefficients for the Chebyshev series to converge.
\end_layout
\begin_layout Subsection
Fourier function fitting
\end_layout
\begin_layout Standard
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
from scipy.integrate import quad
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
def f1(x,m):
\end_layout
\begin_layout Plain Layout
return f(x)*cos(m*(x+1)*np.pi/2)
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
def fouriercoeffs(f1,N):
\end_layout
\begin_layout Plain Layout
...: fcoeff=[]
\end_layout
\begin_layout Plain Layout
...: for i in range(N):
\end_layout
\begin_layout Plain Layout
...: fcoeff.append(quad(f1,-1,1,args=(i))[0])
\end_layout
\begin_layout Plain Layout
...: return np.array(fcoeff)
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Plots of fouriercoeffs for N=100 are as follows:
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename hx_fourier.png
\end_inset
\end_layout
\begin_layout Standard
Clearly, since h(x) is periodic, it is able to be approximated well by a
Fourier fit.
The value of delta influences how quickly the series converges, with larger
delta converging more quickly than small delta.
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename gx_fourier.png
\end_inset
\end_layout
\begin_layout Standard
g(x) does not converge quickly, having well over 100 coefficients for various
values of delta.
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename vx_fourier.png
\end_inset
\end_layout
\begin_layout Standard
The magnitude of the coefficients of v(x) drop exponentially, but still
are of the order of
\begin_inset Formula $10^{-4}$
\end_inset
at N=100.
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename fx_fourier.png
\end_inset
\end_layout
\begin_layout Standard
The coefficients of f(x) also drop in magnitude similar to v(x).
\end_layout
\begin_layout Standard
\begin_inset Graphics
filename ux_fourier.png
\end_inset
\end_layout
\begin_layout Standard
The coefficients of u(x) also don't quickly decay with N.
\end_layout
\end_body
\end_document