forked from hche11/VGGSound
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
123 lines (102 loc) · 3.37 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import torch
from torch.optim import *
import torchvision
from torchvision.transforms import *
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
import numpy as np
import json
import argparse
import csv
from model import AVENet
from datasets import GetAudioVideoDataset
def get_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
'--data_path',
default='/scratch/shared/beegfs/hchen/train_data/VGGSound_final/audio/',
type=str,
help='Directory path of data')
parser.add_argument(
'--result_path',
default='/scratch/shared/beegfs/hchen/prediction/audioclassification/vggsound/resnet18/',
type=str,
help='Directory path of results')
parser.add_argument(
'--summaries',
default='/scratch/shared/beegfs/hchen/epoch/audioclassification_f/resnet18_vlad/model.pth.tar',
type=str,
help='Directory path of pretrained model')
parser.add_argument(
'--pool',
default="vlad",
type=str,
help= 'either vlad or avgpool')
parser.add_argument(
'--csv_path',
default='./data/',
type=str,
help='metadata directory')
parser.add_argument(
'--test',
default='test.csv',
type=str,
help='test csv files')
parser.add_argument(
'--batch_size',
default=32,
type=int,
help='Batch Size')
parser.add_argument(
'--n_classes',
default=309,
type=int,
help=
'Number of classes')
parser.add_argument(
'--model_depth',
default=18,
type=int,
help='Depth of resnet (10 | 18 | 34 | 50 | 101)')
parser.add_argument(
'--resnet_shortcut',
default='B',
type=str,
help='Shortcut type of resnet (A | B)')
return parser.parse_args()
def main():
args = get_arguments()
# create prediction directory if not exists
if not os.path.exists(args.result_path):
os.mkdir(args.result_path)
# init network
os.environ["CUDA_VISIBLE_DEVICES"]="0"
model= AVENet(args)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.cuda()
# load pretrained models
checkpoint = torch.load(args.summaries)
model.load_state_dict(checkpoint['model_state_dict'])
model.to(device)
print('load pretrained model.')
# create dataloader
testdataset = GetAudioVideoDataset(args, mode='test')
testdataloader = DataLoader(testdataset, batch_size=args.batch_size, shuffle=False,num_workers = 16)
softmax = nn.Softmax(dim=1)
print("Loaded dataloader.")
model.eval()
for step, (spec, audio, label, name) in enumerate(testdataloader):
print('%d / %d' % (step,len(testdataloader) - 1))
spec = Variable(spec).cuda()
label = Variable(label).cuda()
aud_o = model(spec.unsqueeze(1).float())
prediction = softmax(aud_o)
for i, item in enumerate(name):
np.save(args.result_path + '/%s.npy' % item,prediction[i].cpu().data.numpy())
# print example scores
# print('%s, label : %s, prediction score : %.3f' % (
# name[i][:-4], testdataset.classes[label[i]], prediction[i].cpu().data.numpy()[label[i]]))
if __name__ == "__main__":
main()