diff --git a/jupyter-book/air_repertoire/ir_profiling.ipynb b/jupyter-book/air_repertoire/ir_profiling.ipynb index 8caf1046..247c90b8 100644 --- a/jupyter-book/air_repertoire/ir_profiling.ipynb +++ b/jupyter-book/air_repertoire/ir_profiling.ipynb @@ -2634,14 +2634,6 @@ "adata_bcr.obs.head()" ] }, - { - "cell_type": "markdown", - "id": "af90f8bf", - "metadata": {}, - "source": [ - "TODO downsampling for faster runs => depends on what to show in future chapters => not done yet" - ] - }, { "cell_type": "markdown", "id": "5e729d42", diff --git a/jupyter-book/air_repertoire/multimodal_integration.ipynb b/jupyter-book/air_repertoire/multimodal_integration.ipynb index aaf87344..1493e91f 100644 --- a/jupyter-book/air_repertoire/multimodal_integration.ipynb +++ b/jupyter-book/air_repertoire/multimodal_integration.ipynb @@ -91,7 +91,7 @@ "id": "df125d78", "metadata": {}, "source": [ - "! wget -O $path_bcr_input -nc # todo file link https://figshare.com/ndownloader/files/35574338" + "! wget -O $path_bcr_input -nc https://figshare.com/ndownloader/files/35574338" ] }, { @@ -99,7 +99,7 @@ "id": "d562d189", "metadata": {}, "source": [ - "! wget -O $path_bcr_input -nc # todo file link https://figshare.com/ndownloader/files/35574338" + "! wget -O $path_bcr_input -nc https://figshare.com/ndownloader/files/35574338" ] }, { @@ -2443,7 +2443,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.10" + "version": "3.11.5" }, "vscode": { "interpreter": { diff --git a/jupyter-book/cellular_structure/clustering.ipynb b/jupyter-book/cellular_structure/clustering.ipynb index 97f1e2a6..47551a3a 100644 --- a/jupyter-book/cellular_structure/clustering.ipynb +++ b/jupyter-book/cellular_structure/clustering.ipynb @@ -97,9 +97,7 @@ "id": "504c02ab-3614-430e-a6a7-deea6d9872d8", "metadata": {}, "source": [ - "The Leiden algorithm leverages a KNN graph on the reduced expression space. We can calculate the KNN graph on a lower-dimensional gene expression representation with the scanpy function `sc.pp.neighbors`. We call this function on the top 30 principal-components as these capture most of the variance in the dataset (see Preprocessing chapter TODO LINK THIS LATER). \n", - "\n", - "Visualizing the clustering can help us to understand the results, we therefore embed our cells into a UMAP embedding. More information on UMAP visualizations can be found in the visualization section. TODO LINK THIS LATER" + "The Leiden algorithm leverages a KNN graph on the reduced expression space. We can calculate the KNN graph on a lower-dimensional gene expression representation with the scanpy function `sc.pp.neighbors`. We call this function on the top 30 principal-components as these capture most of the variance in the dataset. Visualizing the clustering can help us to understand the results, we therefore embed our cells into a UMAP embedding. More details can be found in the {ref}`pre-processing:dimensionality-reduction` chapter." ] }, { diff --git a/jupyter-book/surface_protein/quality_control.ipynb b/jupyter-book/surface_protein/quality_control.ipynb index bc0a2919..f2e640cc 100644 --- a/jupyter-book/surface_protein/quality_control.ipynb +++ b/jupyter-book/surface_protein/quality_control.ipynb @@ -101,7 +101,6 @@ }, "outputs": [], "source": [ - "# ToDo adjust this\n", "rna = sc.read_10x_h5(\n", " filename=\"rna_filtered_feature_bc_matrix.h5\",\n", " backup_url=\"https://figshare.com/ndownloader/files/39546196\",\n", @@ -196,7 +195,6 @@ } ], "source": [ - "# ToDo adjust this\n", "rna_raw = sc.read_10x_h5(\n", " filename=\"rna_raw_feature_bc_matrix.h5\",\n", " backup_url=\"https://figshare.com/ndownloader/files/39546217\",\n",