forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer_main.py
638 lines (533 loc) · 25.3 KB
/
transformer_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Train and evaluate the Transformer model.
See README for description of setting the training schedule and evaluating the
BLEU score.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tempfile
# pylint: disable=g-bad-import-order
from six.moves import xrange # pylint: disable=redefined-builtin
from absl import app as absl_app
from absl import flags
import tensorflow as tf
# pylint: enable=g-bad-import-order
from official.transformer import compute_bleu
from official.transformer import translate
from official.transformer.model import model_params
from official.transformer.model import transformer
from official.transformer.utils import dataset
from official.transformer.utils import metrics
from official.transformer.utils import schedule
from official.transformer.utils import tokenizer
from official.utils.accelerator import tpu as tpu_util
from official.utils.export import export
from official.utils.flags import core as flags_core
from official.utils.logs import hooks_helper
from official.utils.logs import logger
from official.utils.misc import distribution_utils
from official.utils.misc import model_helpers
PARAMS_MAP = {
"tiny": model_params.TINY_PARAMS,
"base": model_params.BASE_PARAMS,
"big": model_params.BIG_PARAMS,
}
DEFAULT_TRAIN_EPOCHS = 10
INF = int(1e9)
BLEU_DIR = "bleu"
# Dictionary containing tensors that are logged by the logging hooks. Each item
# maps a string to the tensor name.
TENSORS_TO_LOG = {
"learning_rate": "model/get_train_op/learning_rate/learning_rate",
"cross_entropy_loss": "model/cross_entropy"}
def model_fn(features, labels, mode, params):
"""Defines how to train, evaluate and predict from the transformer model."""
with tf.variable_scope("model"):
inputs, targets = features, labels
# Create model and get output logits.
model = transformer.Transformer(params, mode == tf.estimator.ModeKeys.TRAIN)
logits = model(inputs, targets)
# When in prediction mode, the labels/targets is None. The model output
# is the prediction
if mode == tf.estimator.ModeKeys.PREDICT:
if params["use_tpu"]:
raise NotImplementedError("Prediction is not yet supported on TPUs.")
return tf.estimator.EstimatorSpec(
tf.estimator.ModeKeys.PREDICT,
predictions=logits,
export_outputs={
"translate": tf.estimator.export.PredictOutput(logits)
})
# Explicitly set the shape of the logits for XLA (TPU). This is needed
# because the logits are passed back to the host VM CPU for metric
# evaluation, and the shape of [?, ?, vocab_size] is too vague. However
# it is known from Transformer that the first two dimensions of logits
# are the dimensions of targets. Note that the ambiguous shape of logits is
# not a problem when computing xentropy, because padded_cross_entropy_loss
# resolves the shape on the TPU.
logits.set_shape(targets.shape.as_list() + logits.shape.as_list()[2:])
# Calculate model loss.
# xentropy contains the cross entropy loss of every nonpadding token in the
# targets.
xentropy, weights = metrics.padded_cross_entropy_loss(
logits, targets, params["label_smoothing"], params["vocab_size"])
loss = tf.reduce_sum(xentropy) / tf.reduce_sum(weights)
# Save loss as named tensor that will be logged with the logging hook.
tf.identity(loss, "cross_entropy")
if mode == tf.estimator.ModeKeys.EVAL:
if params["use_tpu"]:
# host call functions should only have tensors as arguments.
# This lambda pre-populates params so that metric_fn is
# TPUEstimator compliant.
metric_fn = lambda logits, labels: (
metrics.get_eval_metrics(logits, labels, params=params))
eval_metrics = (metric_fn, [logits, labels])
return tf.contrib.tpu.TPUEstimatorSpec(
mode=mode, loss=loss, predictions={"predictions": logits},
eval_metrics=eval_metrics)
return tf.estimator.EstimatorSpec(
mode=mode, loss=loss, predictions={"predictions": logits},
eval_metric_ops=metrics.get_eval_metrics(logits, labels, params))
else:
train_op, metric_dict = get_train_op_and_metrics(loss, params)
# Epochs can be quite long. This gives some intermediate information
# in TensorBoard.
metric_dict["minibatch_loss"] = loss
if params["use_tpu"]:
return tf.contrib.tpu.TPUEstimatorSpec(
mode=mode, loss=loss, train_op=train_op,
host_call=tpu_util.construct_scalar_host_call(
metric_dict=metric_dict, model_dir=params["model_dir"],
prefix="training/")
)
record_scalars(metric_dict)
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
def record_scalars(metric_dict):
for key, value in metric_dict.items():
tf.contrib.summary.scalar(name=key, tensor=value)
def get_learning_rate(learning_rate, hidden_size, learning_rate_warmup_steps):
"""Calculate learning rate with linear warmup and rsqrt decay."""
with tf.name_scope("learning_rate"):
warmup_steps = tf.to_float(learning_rate_warmup_steps)
step = tf.to_float(tf.train.get_or_create_global_step())
learning_rate *= (hidden_size ** -0.5)
# Apply linear warmup
learning_rate *= tf.minimum(1.0, step / warmup_steps)
# Apply rsqrt decay
learning_rate *= tf.rsqrt(tf.maximum(step, warmup_steps))
# Create a named tensor that will be logged using the logging hook.
# The full name includes variable and names scope. In this case, the name
# is model/get_train_op/learning_rate/learning_rate
tf.identity(learning_rate, "learning_rate")
return learning_rate
def get_train_op_and_metrics(loss, params):
"""Generate training op and metrics to save in TensorBoard."""
with tf.variable_scope("get_train_op"):
learning_rate = get_learning_rate(
learning_rate=params["learning_rate"],
hidden_size=params["hidden_size"],
learning_rate_warmup_steps=params["learning_rate_warmup_steps"])
# Create optimizer. Use LazyAdamOptimizer from TF contrib, which is faster
# than the TF core Adam optimizer.
optimizer = tf.contrib.opt.LazyAdamOptimizer(
learning_rate,
beta1=params["optimizer_adam_beta1"],
beta2=params["optimizer_adam_beta2"],
epsilon=params["optimizer_adam_epsilon"])
if params["use_tpu"] and params["tpu"] != tpu_util.LOCAL:
optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
# Calculate and apply gradients using LazyAdamOptimizer.
global_step = tf.train.get_global_step()
tvars = tf.trainable_variables()
gradients = optimizer.compute_gradients(
loss, tvars, colocate_gradients_with_ops=True)
minimize_op = optimizer.apply_gradients(
gradients, global_step=global_step, name="train")
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
train_op = tf.group(minimize_op, update_ops)
train_metrics = {"learning_rate": learning_rate}
if not params["use_tpu"]:
# gradient norm is not included as a summary when running on TPU, as
# it can cause instability between the TPU and the host controller.
gradient_norm = tf.global_norm(list(zip(*gradients))[0])
train_metrics["global_norm/gradient_norm"] = gradient_norm
return train_op, train_metrics
def translate_and_compute_bleu(estimator, subtokenizer, bleu_source, bleu_ref):
"""Translate file and report the cased and uncased bleu scores."""
# Create temporary file to store translation.
tmp = tempfile.NamedTemporaryFile(delete=False)
tmp_filename = tmp.name
translate.translate_file(
estimator, subtokenizer, bleu_source, output_file=tmp_filename,
print_all_translations=False)
# Compute uncased and cased bleu scores.
uncased_score = compute_bleu.bleu_wrapper(bleu_ref, tmp_filename, False)
cased_score = compute_bleu.bleu_wrapper(bleu_ref, tmp_filename, True)
os.remove(tmp_filename)
return uncased_score, cased_score
def get_global_step(estimator):
"""Return estimator's last checkpoint."""
return int(estimator.latest_checkpoint().split("-")[-1])
def evaluate_and_log_bleu(estimator, bleu_source, bleu_ref, vocab_file):
"""Calculate and record the BLEU score."""
subtokenizer = tokenizer.Subtokenizer(vocab_file)
uncased_score, cased_score = translate_and_compute_bleu(
estimator, subtokenizer, bleu_source, bleu_ref)
tf.logging.info("Bleu score (uncased): %d", uncased_score)
tf.logging.info("Bleu score (cased): %d", cased_score)
return uncased_score, cased_score
def _validate_file(filepath):
"""Make sure that file exists."""
if not tf.gfile.Exists(filepath):
raise tf.errors.NotFoundError(None, None, "File %s not found." % filepath)
def run_loop(
estimator, schedule_manager, train_hooks=None, benchmark_logger=None,
bleu_source=None, bleu_ref=None, bleu_threshold=None, vocab_file=None):
"""Train and evaluate model, and optionally compute model's BLEU score.
**Step vs. Epoch vs. Iteration**
Steps and epochs are canonical terms used in TensorFlow and general machine
learning. They are used to describe running a single process (train/eval):
- Step refers to running the process through a single or batch of examples.
- Epoch refers to running the process through an entire dataset.
E.g. training a dataset with 100 examples. The dataset is
divided into 20 batches with 5 examples per batch. A single training step
trains the model on one batch. After 20 training steps, the model will have
trained on every batch in the dataset, or, in other words, one epoch.
Meanwhile, iteration is used in this implementation to describe running
multiple processes (training and eval).
- A single iteration:
1. trains the model for a specific number of steps or epochs.
2. evaluates the model.
3. (if source and ref files are provided) compute BLEU score.
This function runs through multiple train+eval+bleu iterations.
Args:
estimator: tf.Estimator containing model to train.
schedule_manager: A schedule.Manager object to guide the run loop.
train_hooks: List of hooks to pass to the estimator during training.
benchmark_logger: a BenchmarkLogger object that logs evaluation data
bleu_source: File containing text to be translated for BLEU calculation.
bleu_ref: File containing reference translations for BLEU calculation.
bleu_threshold: minimum BLEU score before training is stopped.
vocab_file: Path to vocab file that will be used to subtokenize bleu_source.
Raises:
ValueError: if both or none of single_iteration_train_steps and
single_iteration_train_epochs were defined.
NotFoundError: if the vocab file or bleu files don't exist.
"""
if bleu_source:
_validate_file(bleu_source)
if bleu_ref:
_validate_file(bleu_ref)
if vocab_file:
_validate_file(vocab_file)
evaluate_bleu = bleu_source is not None and bleu_ref is not None
if evaluate_bleu and schedule_manager.use_tpu:
raise ValueError("BLEU score can not be computed when training with a TPU, "
"as it requires estimator.predict which is not yet "
"supported.")
# Print details of training schedule.
tf.logging.info("Training schedule:")
tf.logging.info(
"\t1. Train for {}".format(schedule_manager.train_increment_str))
tf.logging.info("\t2. Evaluate model.")
if evaluate_bleu:
tf.logging.info("\t3. Compute BLEU score.")
if bleu_threshold is not None:
tf.logging.info("Repeat above steps until the BLEU score reaches %f" %
bleu_threshold)
if not evaluate_bleu or bleu_threshold is None:
tf.logging.info("Repeat above steps %d times." %
schedule_manager.train_eval_iterations)
if evaluate_bleu:
# Create summary writer to log bleu score (values can be displayed in
# Tensorboard).
bleu_writer = tf.summary.FileWriter(
os.path.join(estimator.model_dir, BLEU_DIR))
if bleu_threshold is not None:
# Change loop stopping condition if bleu_threshold is defined.
schedule_manager.train_eval_iterations = INF
# Loop training/evaluation/bleu cycles
for i in xrange(schedule_manager.train_eval_iterations):
tf.logging.info("Starting iteration %d" % (i + 1))
# Train the model for single_iteration_train_steps or until the input fn
# runs out of examples (if single_iteration_train_steps is None).
estimator.train(
dataset.train_input_fn,
steps=schedule_manager.single_iteration_train_steps,
hooks=train_hooks)
eval_results = estimator.evaluate(
input_fn=dataset.eval_input_fn,
steps=schedule_manager.single_iteration_eval_steps)
tf.logging.info("Evaluation results (iter %d/%d):" %
(i + 1, schedule_manager.train_eval_iterations))
tf.logging.info(eval_results)
benchmark_logger.log_evaluation_result(eval_results)
# The results from estimator.evaluate() are measured on an approximate
# translation, which utilize the target golden values provided. The actual
# bleu score must be computed using the estimator.predict() path, which
# outputs translations that are not based on golden values. The translations
# are compared to reference file to get the actual bleu score.
if evaluate_bleu:
uncased_score, cased_score = evaluate_and_log_bleu(
estimator, bleu_source, bleu_ref, vocab_file)
# Write actual bleu scores using summary writer and benchmark logger
global_step = get_global_step(estimator)
summary = tf.Summary(value=[
tf.Summary.Value(tag="bleu/uncased", simple_value=uncased_score),
tf.Summary.Value(tag="bleu/cased", simple_value=cased_score),
])
bleu_writer.add_summary(summary, global_step)
bleu_writer.flush()
benchmark_logger.log_metric(
"bleu_uncased", uncased_score, global_step=global_step)
benchmark_logger.log_metric(
"bleu_cased", cased_score, global_step=global_step)
# Stop training if bleu stopping threshold is met.
if model_helpers.past_stop_threshold(bleu_threshold, uncased_score):
bleu_writer.close()
break
def define_transformer_flags():
"""Add flags and flag validators for running transformer_main."""
# Add common flags (data_dir, model_dir, train_epochs, etc.).
flags_core.define_base()
flags_core.define_performance(
num_parallel_calls=True,
inter_op=False,
intra_op=False,
synthetic_data=True,
max_train_steps=False,
dtype=False,
all_reduce_alg=True
)
flags_core.define_benchmark()
flags_core.define_device(tpu=True)
# Set flags from the flags_core module as "key flags" so they're listed when
# the '-h' flag is used. Without this line, the flags defined above are
# only shown in the full `--helpful` help text.
flags.adopt_module_key_flags(flags_core)
# Add transformer-specific flags
flags.DEFINE_enum(
name="param_set", short_name="mp", default="big",
enum_values=PARAMS_MAP.keys(),
help=flags_core.help_wrap(
"Parameter set to use when creating and training the model. The "
"parameters define the input shape (batch size and max length), "
"model configuration (size of embedding, # of hidden layers, etc.), "
"and various other settings. The big parameter set increases the "
"default batch size, embedding/hidden size, and filter size. For a "
"complete list of parameters, please see model/model_params.py."))
flags.DEFINE_bool(
name="static_batch", default=False,
help=flags_core.help_wrap(
"Whether the batches in the dataset should have static shapes. In "
"general, this setting should be False. Dynamic shapes allow the "
"inputs to be grouped so that the number of padding tokens is "
"minimized, and helps model training. In cases where the input shape "
"must be static (e.g. running on TPU), this setting will be ignored "
"and static batching will always be used."))
# Flags for training with steps (may be used for debugging)
flags.DEFINE_integer(
name="train_steps", short_name="ts", default=None,
help=flags_core.help_wrap("The number of steps used to train."))
flags.DEFINE_integer(
name="steps_between_evals", short_name="sbe", default=1000,
help=flags_core.help_wrap(
"The Number of training steps to run between evaluations. This is "
"used if --train_steps is defined."))
# BLEU score computation
flags.DEFINE_string(
name="bleu_source", short_name="bls", default=None,
help=flags_core.help_wrap(
"Path to source file containing text translate when calculating the "
"official BLEU score. Both --bleu_source and --bleu_ref must be set. "
"Use the flag --stop_threshold to stop the script based on the "
"uncased BLEU score."))
flags.DEFINE_string(
name="bleu_ref", short_name="blr", default=None,
help=flags_core.help_wrap(
"Path to source file containing text translate when calculating the "
"official BLEU score. Both --bleu_source and --bleu_ref must be set. "
"Use the flag --stop_threshold to stop the script based on the "
"uncased BLEU score."))
flags.DEFINE_string(
name="vocab_file", short_name="vf", default=None,
help=flags_core.help_wrap(
"Path to subtoken vocabulary file. If data_download.py was used to "
"download and encode the training data, look in the data_dir to find "
"the vocab file."))
flags_core.set_defaults(data_dir="/tmp/translate_ende",
model_dir="/tmp/transformer_model",
batch_size=None,
train_epochs=None)
@flags.multi_flags_validator(
["train_epochs", "train_steps"],
message="Both --train_steps and --train_epochs were set. Only one may be "
"defined.")
def _check_train_limits(flag_dict):
return flag_dict["train_epochs"] is None or flag_dict["train_steps"] is None
@flags.multi_flags_validator(
["bleu_source", "bleu_ref"],
message="Both or neither --bleu_source and --bleu_ref must be defined.")
def _check_bleu_files(flags_dict):
return (flags_dict["bleu_source"] is None) == (
flags_dict["bleu_ref"] is None)
@flags.multi_flags_validator(
["bleu_source", "bleu_ref", "vocab_file"],
message="--vocab_file must be defined if --bleu_source and --bleu_ref "
"are defined.")
def _check_bleu_vocab_file(flags_dict):
if flags_dict["bleu_source"] and flags_dict["bleu_ref"]:
return flags_dict["vocab_file"] is not None
return True
@flags.multi_flags_validator(
["export_dir", "vocab_file"],
message="--vocab_file must be defined if --export_dir is set.")
def _check_export_vocab_file(flags_dict):
if flags_dict["export_dir"]:
return flags_dict["vocab_file"] is not None
return True
flags_core.require_cloud_storage(["data_dir", "model_dir", "export_dir"])
def construct_estimator(flags_obj, params, schedule_manager):
"""Construct an estimator from either Estimator or TPUEstimator.
Args:
flags_obj: The FLAGS object parsed from command line.
params: A dict of run specific parameters.
schedule_manager: A schedule.Manager object containing the run schedule.
Returns:
An estimator object to be used for training and eval.
"""
if not params["use_tpu"]:
distribution_strategy = distribution_utils.get_distribution_strategy(
distribution_strategy=flags_obj.distribution_strategy,
num_gpus=flags_core.get_num_gpus(flags_obj),
all_reduce_alg=flags_obj.all_reduce_alg)
return tf.estimator.Estimator(
model_fn=model_fn, model_dir=flags_obj.model_dir, params=params,
config=tf.estimator.RunConfig(train_distribute=distribution_strategy))
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
tpu=flags_obj.tpu,
zone=flags_obj.tpu_zone,
project=flags_obj.tpu_gcp_project
)
tpu_config = tf.contrib.tpu.TPUConfig(
iterations_per_loop=schedule_manager.single_iteration_train_steps,
num_shards=flags_obj.num_tpu_shards)
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
model_dir=flags_obj.model_dir,
session_config=tf.ConfigProto(
allow_soft_placement=True, log_device_placement=True),
tpu_config=tpu_config)
return tf.contrib.tpu.TPUEstimator(
model_fn=model_fn,
use_tpu=params["use_tpu"] and flags_obj.tpu != tpu_util.LOCAL,
train_batch_size=schedule_manager.batch_size,
eval_batch_size=schedule_manager.batch_size,
params={
# TPUEstimator needs to populate batch_size itself due to sharding.
key: value for key, value in params.items() if key != "batch_size"},
config=run_config)
def run_transformer(flags_obj):
"""Create tf.Estimator to train and evaluate transformer model.
Args:
flags_obj: Object containing parsed flag values.
"""
num_gpus = flags_core.get_num_gpus(flags_obj)
# Add flag-defined parameters to params object
params = PARAMS_MAP[flags_obj.param_set]
if num_gpus > 1:
if flags_obj.param_set == "big":
params = model_params.BIG_MULTI_GPU_PARAMS
elif flags_obj.param_set == "base":
params = model_params.BASE_MULTI_GPU_PARAMS
params["data_dir"] = flags_obj.data_dir
params["model_dir"] = flags_obj.model_dir
params["num_parallel_calls"] = flags_obj.num_parallel_calls
params["tpu"] = flags_obj.tpu
params["use_tpu"] = bool(flags_obj.tpu) # was a tpu specified.
params["static_batch"] = flags_obj.static_batch or params["use_tpu"]
params["allow_ffn_pad"] = not params["use_tpu"]
params["use_synthetic_data"] = flags_obj.use_synthetic_data
# Set batch size parameter, which depends on the availability of
# TPU and GPU, and distribution settings.
params["batch_size"] = (flags_obj.batch_size or (
params["default_batch_size_tpu"] if params["use_tpu"]
else params["default_batch_size"]))
if not params["use_tpu"]:
params["batch_size"] = distribution_utils.per_device_batch_size(
params["batch_size"], num_gpus)
schedule_manager = schedule.Manager(
train_steps=flags_obj.train_steps,
steps_between_evals=flags_obj.steps_between_evals,
train_epochs=flags_obj.train_epochs,
epochs_between_evals=flags_obj.epochs_between_evals,
default_train_epochs=DEFAULT_TRAIN_EPOCHS,
batch_size=params["batch_size"],
max_length=params["max_length"],
use_tpu=params["use_tpu"],
num_tpu_shards=flags_obj.num_tpu_shards
)
params["repeat_dataset"] = schedule_manager.repeat_dataset
model_helpers.apply_clean(flags.FLAGS)
# Create hooks that log information about the training and metric values
train_hooks = hooks_helper.get_train_hooks(
flags_obj.hooks,
model_dir=flags_obj.model_dir,
tensors_to_log=TENSORS_TO_LOG, # used for logging hooks
batch_size=schedule_manager.batch_size, # for ExamplesPerSecondHook
use_tpu=params["use_tpu"] # Not all hooks can run with TPUs
)
benchmark_logger = logger.get_benchmark_logger()
benchmark_logger.log_run_info(
model_name="transformer",
dataset_name="wmt_translate_ende",
run_params=params,
test_id=flags_obj.benchmark_test_id)
# Train and evaluate transformer model
estimator = construct_estimator(flags_obj, params, schedule_manager)
run_loop(
estimator=estimator,
# Training arguments
schedule_manager=schedule_manager,
train_hooks=train_hooks,
benchmark_logger=benchmark_logger,
# BLEU calculation arguments
bleu_source=flags_obj.bleu_source,
bleu_ref=flags_obj.bleu_ref,
bleu_threshold=flags_obj.stop_threshold,
vocab_file=flags_obj.vocab_file)
if flags_obj.export_dir and not params["use_tpu"]:
serving_input_fn = export.build_tensor_serving_input_receiver_fn(
shape=[None], dtype=tf.int64, batch_size=None)
# Export saved model, and save the vocab file as an extra asset. The vocab
# file is saved to allow consistent input encoding and output decoding.
# (See the "Export trained model" section in the README for an example of
# how to use the vocab file.)
# Since the model itself does not use the vocab file, this file is saved as
# an extra asset rather than a core asset.
estimator.export_savedmodel(
flags_obj.export_dir, serving_input_fn,
assets_extra={"vocab.txt": flags_obj.vocab_file},
strip_default_attrs=True)
def main(_):
with logger.benchmark_context(flags.FLAGS):
run_transformer(flags.FLAGS)
if __name__ == "__main__":
tf.logging.set_verbosity(tf.logging.INFO)
define_transformer_flags()
absl_app.run(main)